Route planning of regional emergency evacuation based on lane modeling
-
摘要: 为有效解决应急疏散路线中存在的延误问题, 以总体疏散费用最小为目标, 以消除冲突点, 减少交织点, 并且以流量守恒、流量非负、节点和弧段的通行能力限制等为约束条件, 提出了基于车道层面的路网模型。利用Lingo软件, 分别对应用基于车道层面的疏散扩展网络流模型以及应用基于路段层面的节点-弧网络模型进行求解, 并以4个交叉口网络为例进行了对比分析。计算结果表明: 与应用基于路段层面的节点-弧网络模型相比, 应用基于车道层面的扩展网络流模型节约了4 h·veh-1的出行费用, 出行成本降低了25%, 该模型在使疏散费用最小化的同时, 减少了交织情况产生的延误, 具有较高的疏散效率。Abstract: In order to effectively solve the potential delay during emergency evacuation routes, a lane-based network flow model was presented, its objective was the minimum of whole evacuation cost, and its constraint conditions were eliminating crossing-conflicts, reducing confluence, flow conservation and non-negative, restricting the traffic capacities of nodes and arcs. The expansion network flow model based on lane level and the traditional node-arc network model based on road level were solved by adopting Lingo software respectively, and a network including four intersections was analyzed as an example. Analysis result indicates that compared to the traditional network model, the travel cost saves four hours per vehicle, and reduces by 25% through the lane-based extension network flow model, so the model can minimize evacuation cost, reduce delay caused by merging and crossing, and improve evacuation efficiency.
-
表 1 模型求解结果
Table 1. Solution results of models
h·veh-1 应用基于车道层面的扩展网络流模型 应用基于路段层面的节点-弧网络模型 最优目标值 12 最优目标值 16 X(O1, D2) 1 X(O1, D2) 1 X(O2, M4) 1 X(O2, M4) 1 X(O3, D5) 1 X(O3, D5) 1 X(O4, M2) 1 X(O4, M2) 1 X(O5, M7) 1 X(O5, M7) 1 X(O6, D4) 1 X(O6, D4) 1 X(O7, M5) 1 X(O7, M5) 1 X(O8, D7) 1 X(O8, D7) 1 X(M2, D1) 1 X(M2, D2) 1 X(M4, D3) 1 X(M4, D4) 1 X(M5, D6) 1 X(M5, D5) 1 X(M7, D8) 1 X(M7, D7) 1 X(D2, D1) 1 X(D4, D3) 1 X(D5, D6) 1 X(D7, D8) 1 表 2 疏散路线
Table 2. Evacuation routes
疏散方案 疏散路线 单位路径费用/(h·veh-1) 单位交织费用/(h·veh-1) 总费用/(h·veh-1) 总交织费用/(h·veh-1) 交织费用比例/% 应用基于车道层面的扩展网络流模型 O1—D2 1 0 12 0 0 O2—M4—D3 2 0 O3—D5 1 0 O4—M2—D1 2 0 O5—M7—D8 2 0 O6—D4 1 0 O7—M5—D6 2 0 O8—D7 1 0 应用基于路段层面的节点-弧网络模型 O1—D2 1 0 16 4 25 O2—M4—D4 2 1 O3—D5 1 2 O4—M2—D2 2 1 O5—M7—D7 2 1 O6—D4 2 0 O7—M5—D5 2 1 O8—D7 1 0 -
[1] 张毅, 邵晨曦. 人员紧急疏散系统动力学模型及其分析[J]. 计算机工程与应用, 2005, 41(12): 198-201. doi: 10.3321/j.issn:1002-8331.2005.12.061ZHANG Yi, SHAO Chen-xi. Modelling and analyzing dynamic system of people urgent evacuation[J]. Computer Engineering and Applications, 2005, 41(12): 198-201. (in Chinese) doi: 10.3321/j.issn:1002-8331.2005.12.061 [2] 高明霞, 贺国光. 考虑交叉口特性的疏散交通路线研究[J]. 土木工程学报, 2007, 40(6): 80-83. doi: 10.3321/j.issn:1000-131X.2007.06.014GAO Ming-xia, HE Guo-guang. Optimization of evacuation routes considering movements at intersections[J]. China Civil Engineering Journal, 2007, 40(6): 80-83. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.06.014 [3] WI NTER S. Modeling costs of turns in route planning[J]. GeoInformatica, 2002, 6(4): 345-361. doi: 10.1023/A:1020853410145 [4] COVA TJ, JOHNSONJ P. Anetworkflow model for lanebased evacuation routing[J]. Transportation Research Part A: Policy and Practice, 2003, 37(7): 579-604. doi: 10.1016/S0965-8564(03)00007-7 [5] Oak Ridge National Laboratory. Oak ridge evacuation modeling system(OREMS)[R]. Tennessee: Oak Ridge National Laboratory, 2004. [6] 高超, 蒋光胜, 杨孝宽, 等. 城市应急疏散策略[J]. 道路交通与安全, 2007, 7(3): 6-9, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA200703002.htmGAO Chao, JI ANG Guang-sheng, YANG Xiao-kuan, et al. Study on evacuation strategies for the emergency of cities[J]. Road Traffic and Safety, 2007, 7(3): 6-9, 29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA200703002.htm [7] 谭满春, 唐松安, 徐建闽. 多车道高速公路的动态离散交通流模型[J]. 中国公路学报, 2002, 15(2): 91-94. doi: 10.3321/j.issn:1001-7372.2002.02.023TAN Man-chun, TANG Song-an, XU Jian-min. Dynamic discrete traffic model of freeway with multiple lanes[J]. China Journal of Highway and Transport, 2002, 15(2): 91-94. (in Chinese) doi: 10.3321/j.issn:1001-7372.2002.02.023 [8] 高明霞, 贺国光. 考虑交叉口延误和通行能力优化疏散救援路线的最小费用流模型[J]. 系统工程, 2006, 24(9): 6-10. doi: 10.3969/j.issn.1001-4098.2006.09.002Gao Ming-xia, He Guo-guang. Using minimum cost flow model to optimize evacuation routes considering delays and capacity at intersections[J]. Systems Engineering, 2006, 24(9): 6-10. (in Chinese) doi: 10.3969/j.issn.1001-4098.2006.09.002 [9] 安实, 崔建勋, 王健. 国外道路交通应急区域疏散研究综述[J]. 交通运输系统工程与信息, 2008, 8(6): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT200806006.htmANShi, CUI Jian-xun, WANGJian. An international review of road emergency transport and evacuation[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(6): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT200806006.htm [10] 张子民, 李琦. 应急撤离建模研究的现状、问题与发展趋势[J]. 中国安全科学学报, 2008, 18(10): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200810023.htmZHANG Zi-min, LI Qi. The current situation, issues and trends of evacuation modelingin emergency[J]. China Safety Science Journal, 2008, 18(10): 120-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK200810023.htm [11] SOUTHWORTH F. Regional evacuation modeling: a stateof-the-art review[R]. Tennessee: Oak Ridge National Laboratory, 1991. [12] 孔祥春, 贺国光. 考虑交叉口冲突点延误的交通紧急疏散[J]. 长沙交通学院学报, 2007, 23(3): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX200703009.htmKONG Xiang-chun, HE Guo-guang. Traffic urgent evacuation considering conflict points in traffic delay intersection[J]. Journal of Changsha Communications University, 2007, 23(3): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX200703009.htm -