Real-time prediction model of arrival time for floating transit vehicle
-
摘要: 根据公交浮动车辆实时GPS数据, 考虑不同时段的路段平均速度、公交车站、信号灯等多因素的影响, 建立了一种新的公交车辆到站时间预测模型。通过估计到达下游最临近站点的时间和判断道路上GPS数据的有效性等方法, 改善了预测模型的精度, 并应用重庆公交车辆数据对模型进行验证。计算结果表明: 该模型能够实时预测公交浮动车辆到达下游站点的时间, 预测精度优于现有方法, 在高峰时段预测误差小于9%, 在非高峰时段预测误差约为6%, 并对各种道路交通条件具有较好的适应性。Abstract: According to the real-time GPS data of floating transit vehicle, the effects of road section average speeds, bus stations and traffic lights were considered, and a novel prediction model of bus arrival time was proposed.The precision of prediction model was improved by estimating arrival time to the nearest downstream station and judging the effectiveness of GPS data on raod section.The prediction model was tested and verified by using the transit vehicle GPS data of Chongqing City.Calculation result indicates that the arrival time of floating transit vehicle to the downstream station can be real-time predicted by using the model, the prediction precision is better than the existing methods, the prediction error is less than 9% in peak periods and is about 6% in non-peak periods, and the prediction model has good adaptability to the various of traffic conditions.
-
表 1 进站速度
Table 1. Speeds of entering station
km·h-1 表 2 出站速度
Table 2. Speeds of leaving station
km·h-1 表 3 站点特征
Table 3. Characteristics of stations
-
[1] SUN Di-hua, LUO Hong, FU Li-ping, et al. Predicting bus arrival time on the basis of global positioning system data[J]. Transportation Research Record, 2007(2034): 62-72. [2] PADMANABAN R P S, DIVAKAR K, VANAJAKSHI L, et al. Development of a real-time bus arrival prediction system for Indian traffic conditions[J]. Intelligent Transport System, 2010, 4(3): 189-200. doi: 10.1049/iet-its.2009.0079 [3] YANG J S. A study of travel time modeling via time series analysis[C]//IEEE. Proceedings of 2005 IEEE Control Applications Conference. Piscataway: IEEE, 2005: 855-860. [4] 熊文华, 徐建闽, 林思. 基于BP网络的浮动车与线圈检测数据融合模型[J]. 计算机仿真, 2009, 26(9): 235-238. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200909066.htmXIONG Wen-hua, XU Jian-min, LIN Si. A fusion model for floating vehicle and loop detector data based on BP network[J]. Computer Simulation, 2009, 26(9): 235-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200909066.htm [5] CHEN De-wang, ZHANG Kun, LIAO Tao. Practical travel time prediction algorithms based on neural network and data fusion for urban expressway[C]//IEEE. 2010 Sixth International Conference of Natural Computation. Piscataway: IEEE, 2010: 1754-1758. [6] LEE Y. Freeway travel time forecast using artifical neural networks with cluster method[C]//IEEE. 12th International Conference of Information Fusion. Piscataway: IEEE, 2009: 1331-1338. [7] 于滨, 蒋永雷, 于博, 等. 支持向量机在公交车辆运行时间预测中的应用[J]. 大学海事大学学报, 2008, 34(4): 158-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200804040.htmYU Bin, JIANG Yong-lei, YU Bo, et al. Application of support vector machines in bus travel time prediction[J]. Journal of Dalian Maritime University, 2008, 34(4): 158-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200804040.htm [8] 姚宝珍, 杨成永, 于滨. 动态公交车辆运行时间预测模型[J]. 系统工程学报, 2010, 25(3): 365-370. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGC201003014.htmYAO Bao-zhen, YANG Cheng-yong, YU Bin. Dynamic bus travel-time prediction model[J]. Journal of Systems Engineering, 2010, 25(3): 365-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTGC201003014.htm [9] CHEN Peng, YAN Xin-ping, LI Xu-hong. Bus travel time prediction based on relevance vector machine[C]//IEEE. 2009 International Conference on Information Engineering and Computer Science. Piscataway: IEEE, 2009: 1-4. [10] 温惠英, 徐建闽, 傅惠. 基于灰色关联分析的路段行程时间卡尔曼滤波预测算法[J]. 华南理工大学学报: 自然科学版, 2006, 34(9): 66-69. doi: 10.3321/j.issn:1000-565X.2006.09.014WEN Hui-ying, XU Jian-min, FU Hui. Estimation algorithm with Kalman filtering for road travel time based on grey relation analysis[J]. Journal of South China University of Technology: Natural Science Edition, 2006, 34(9): 66-69. (in Chinese) doi: 10.3321/j.issn:1000-565X.2006.09.014 [11] 计会凤, 徐爱功. 相关法自适应滤波在动态行程时间预测中的应用研究[J]. 测绘科学, 2010, 35(2): 158-160. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201002055.htmJI Hui-feng, XU Ai-gong. The feasibility analysis of the relevant adaptive filtering in the dynamic travel time prediction[J]. Science of Surveying and Mapping, 2010, 35(2): 158-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201002055.htm [12] 李清泉, 尹建忠, 贺奋琴. 面向道路网的GPS浮动车覆盖率模型研究[J]. 武汉大学学报: 信息科学版, 2009, 34(6): 715-718. doi: 10.3321/j.issn:1671-8836.2009.06.020LI Qing-quan, YIN Jian-zhong, HE Fen-qin. A coverage rate model of GPS floating car for road networks[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 715-718. (in Chinese) doi: 10.3321/j.issn:1671-8836.2009.06.020 -