Influence of polygonal wheel on running safety of vehicle
-
摘要: 用Timoshenko梁、Euler梁分别模拟钢轨、直线电机定子与反力板, 用集中质量块、三维实体有限元分别模拟有砟轨道、板式轨道, 建立了直线电机车辆/轨道耦合动力学模型, 分析了2种轨道上不同磨耗程度车轮对轮轨法向力和脱轨系数的影响。计算结果表明: 当车辆以速度为60 km.h-1通过半径为300 m的曲线轨道时, 在板式轨道上的轮轨法向力最小、最大值分别为55.34、112.53 kN, 脱轨系数最大值为0.290, 在有砟轨道上的轮轨法向力最小、最大值分别为60.70、123.00 kN, 脱轨系数最大值为0.289;当车辆以速度为60 km.h-1通过半径为600 m的曲线轨道时, 在板式轨道上的轮轨法向力最小、最大值分别为52.93、107.59 kN, 脱轨系数最大值为0.064, 在有砟轨道上的轮轨法向力最小、最大值分别为59.45、112.33 kN, 脱轨系数最大值为0.071;当车辆以速度为90 km.h-1通过波长为100 mm的3种深度的凹坑时, 在板式轨道上的轮轨法向力最小、最大值分别为49.54、114.36 kN, 脱轨系数最大值为0.024, 在有砟轨道上的轮轨法向力最小、最大值分别为50.19、134.29 kN, 脱轨系数最大值为0.031。各种工况下的脱轨系数均在安全限度以内, 不会引起脱轨。Abstract: Timoshenko beam and Euler beam were respectively used to simulate rail, linear induction motor (LIM) stator and reaction plate, concentration mass block and 3D entity finite element were respectively used to simulate ballast track and slab track, and vehicle/track coupling dynamics models with LIM were established.The influence of wheels with different wear degrees on wheel/rail normal contact forces and derailment coefficients on the two ballasts was analyzed.Calculation result shows that when vehicle passes the curved track with radius 300 m at 60 km·h-1, the minimun and maximum wheel/rail normal contact forces on slab track are 55.34, 112.53 kN, and the maximum derailment coefficient is 0.290.The maximum and minimun wheel/rail normal contact forces on ballast track are 123.00, 60.70 kN, and the maximum derailment coefficient is 0.289.When vehicle passes the curved track with radius 600 m at 60 km·h-1, the minimun and maximum wheel/rail normal contact forces on slab track are 52.93, 107.59 kN, and the maximum derailment coefficient is 0.064.The minimun and maximum wheel/rail normal contact forces on ballast track are 59.45, 112.33 kN, and the maximum derailment coefficient is 0.071.When vehicle passes the pits with wavelength 100 mm and three depths at 60 km·h-1, the minimun and maximum wheel/rail normal contact forces on slab track are 49.54, 114.36 kN, and the maximum derailment coefficient is 0.024.The minimun and maximum wheel/rail normal contact forces on ballast track are 50.19, 134.29 kN, and the maximum derailment coefficient is 0.031.The derailment coefficients under various working conditions are never more than safety limit, and polygonal wheel can't cause vehicle derailment.
-
表 1 工况1轮轨法向力
Table 1. Wheel/rail normal contact forces under condition 1
kN 磨耗类型 最小值 最大值 有砟轨道 板式轨道 有砟轨道 板式轨道 1 60.70 55.34 123.00 112.53 2 83.18 71.45 97.75 89.74 3 83.75 71.78 98.09 92.47 4 81.87 71.46 99.38 92.73 5 78.28 70.42 101.80 92.87 表 2 工况1脱轨系数
Table 2. Derailment coefficients under condition 1
磨耗类型 1 2 3 4 5 有砟轨道 0.289 0.278 0.277 0.278 0.280 板式轨道 0.290 0.268 0.268 0.270 0.273 表 3 工况2轮轨法向力
Table 3. Wheel/rail normal contact forces under condition 2
kN 磨耗类型 最小值 最大值 有砟轨道 板式轨道 有砟轨道 板式轨道 1 59.45 52.93 112.33 107.59 2 82.43 71.44 85.51 89.74 3 82.97 71.77 85.86 92.46 4 81.09 71.46 87.32 92.73 5 77.48 70.41 90.01 89.38 表 4 工况2脱轨系数
Table 4. Derailment coefficients under condition 2
磨耗类型 1 2 3 4 5 有砟轨道 0.071 0.055 0.055 0.056 0.058 板式轨道 0.064 0.028 0.028 0.030 0.036 表 5 工况3轮轨法向力最大值
Table 5. Maximum wheel/rail normal contact forces under condition 3
kN 磨耗类型 1 2 3 4 5 凹坑深度/mm 0.05 114.36 90.79 89.12 91.58 90.72 0.10 114.36 99.14 97.46 99.93 95.06 0.15 114.36 107.49 105.81 108.28 103.41 表 6 工况4轮轨法向力最大值
Table 6. Maximum wheel/rail normal contact forces under condition 4
kN 磨耗类型 1 2 3 4 5 凹坑深度/mm 0.05 117.08 94.06 93.04 93.38 97.12 0.10 125.69 102.63 101.61 101.96 105.70 0.15 134.29 111.21 110.18 110.53 114.28 表 7 工况3轮轨力法向力最小值
Table 7. Minimum wheel/rail normal contact forces under condition 3
kN 磨耗类型 1 2 3 4 5 凹坑深度/mm 0.05 49.54 75.69 76.19 75.44 73.02 0.10 49.54 70.69 71.19 70.44 72.96 0.15 49.54 65.71 66.20 65.46 69.49 表 8 工况4轮轨法向力最小值
Table 8. Minimum wheel/rail normal contact forces under condition 4
kN 磨耗类型 1 2 3 4 5 凹坑深度/mm 0.05 50.19 77.48 75.82 74.59 74.71 0.10 50.19 69.08 67.43 66.20 68.34 0.15 50.19 60.73 59.09 57.87 59.97 表 9 工况3脱轨系数
Table 9. Derailment coefficients under condition 3
磨耗类型 1 2 3 4 5 凹坑深度/mm 0.05 0.0241 0.015 0.015 0.016 0.019 0.10 0.024 0.018 0.018 0.018 0.019 0.15 0.024 0.020 0.020 0.021 0.020 表 10 工况4脱轨系数
Table 10. Derailment coefficients under condition 4
磨耗类型 1 2 3 4 5 凹坑深度/mm 0.05 0.027 0.019 0.017 0.019 0.021 0.10 0.030 0.023 0.021 0.022 0.024 0.15 0.031 0.025 0.024 0.025 0.027 -
[1] POPP K, KRUCE H, KAISERI. Vehicle-track dynamics in the mid-frequency range[J]. Vehicle System Dynamics, 1999, 31 (5/6): 423-464. [2] NIELSEN J C O, LUNDEN R, JOHANSSON A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surface[J]. Vehicle System Dynamics, 2003, 40 (1/2/3): 3-54. [3] NIELSEN J C O, JOHANSSON A. Out-of-round rail waywheels—aliterature survey[J]. Proceedings of the Institution of Mechanical Engineerings, Part F: Journal of Rail and RapidTransit, 2000, 214 (2): 79-91. doi: 10.1243/0954409001531351 [4] MORYS B. Enlargement of out-of-round wheel profiles onhigh speed trains[J]. Journal of Sound and Vibration, 1999, 227 (5): 965-978. doi: 10.1006/jsvi.1999.2055 [5] JOHANSSON A, NIELSEN J C O. Out-of-round railway wheels—wheel rail contact forces and track response deriverd from field tests and numerical simulations[J]. Proceedings of the Institution of Mechanical Engineerings, Part F: Journalof Rail and Rapid Transit, 2003, 217 (2): 135-146. doi: 10.1243/095440903765762878 [6] JOHANSSON A, ANDERSSON C. Out-of-round railway wheels: a study of wheel polygonalization through simulatioof three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43 (8): 539-559. doi: 10.1080/00423110500184649 [7] BROMMUNDT E. Asi mple mechanismfor the polygonaliza-tion of railway wheels by wear[J]. Mechanics Rearch Com-munications, 1997, 24 (4): 435-442. [8] KOH H I, KWON H B, YOU W H, et al. A study on source mechanism in the interior noise problemof high speedtrains[J]. Numerical Fluid Mechanics and Multidiciplinary Design, 2008, 99: 222-228. [9] 张雪珊, 肖新标, 金学松. 高速车轮椭圆化问题及其对车辆横向稳定性的影响[J]. 机械工程学报, 2008, 44 (3): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200803011.htmZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Influence of high speed rail way wheels ovalization on vehicle lateralstability[J]. Chinese Journal of Mechanical Engineering, 2008, 44 (3): 50-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200803011.htm [10] 李玲. 车轮多边形化对直线电机车辆动力学行为的影响[D]. 成都: 西南交通大学, 2010.LI Ling. Influence of polygonal wheel of subway LIM train on dynamic behavior[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese) [11] 庞绍煌, 耿明. 直线电机在轨道车辆运用中的三维分析[J]. 电力机车与城轨车辆, 2004, 27 (1): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI200401011.htmPANG Shao-huang, GENG Ming. Three-dimensional analyse of linear motor application on rail bound vehicles[J]. Electric Locomotives and Mass Transit Vehicles, 2004, 27 (1): 31-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI200401011.htm [12] 王景宏. 采用直线电机牵引的广州地铁车辆[J]. 机车电传动, 2006 (6): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200606014.htmWANG Jing-hong. Guangzhou metro vehicles with linear motor traction[J]. Electric Drive for Locomotives, 2006 (6): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200606014.htm [13] ARI AS-CUEVASA O, LI Zi-li, LEWISB R, et al. Rolling-sliding laboratory tests of friction modifiers in dry and wetwheel-rail contacts[J]. Wear, 2010, 268 (3/4): 543-551. [14] LI Zi-li, ZHAO Xin, DOLLEVOET R, et al. Differentialwear and plastic deformation as causes of squat at track local stiffness change combined with other track short defects[J]. Vehicle System Dynamics, 2008, 46 (S1): 237-246. [15] LI Zi-li, ZHAO Xin, ESVELD C, et al. An investigation into the causes of squats—correlation analysis and numericalmodelling[J]. Wear, 2008, 265 (9/10): 1349-1355. -