Static and dynamic properties of three-tower suspension bridge and structural type selection of mid-tower
-
摘要: 为探讨三塔悬索桥与两塔悬索桥静动力特性差异与中塔选型, 以泰州长江大桥为原型, 基于有限位移理论建立相应的两塔、三塔(混凝土中塔与钢中塔) 悬索桥的空间有限元模型, 分析了各种结构参数下的静力和地震效应。研究结果表明: 与两塔悬索桥相比, 由于中塔顶缺乏边缆的有效纵向约束, 三塔悬索桥整体刚度较小, 变形较大, 自振频率低; 汽车作用下主缆抗滑、桥塔受力、主梁挠跨比等在常规两塔悬索桥中很容易满足要求的指标, 但对三塔悬索桥却成为控制指标。三塔悬索桥的3个指标都与中塔抗推刚度密切相关, 但其对中塔抗推刚度的需求是矛盾的。“人”字形钢中塔三塔悬索桥的主缆抗滑安全系数为2.17, 汽车作用下桥塔最大应力为182 MPa, 最大挠跨比为1/210, 全部满足要求。可见, “人”字形钢中塔较好地兼顾了3个控制指标的需要, 做到了构件刚度和缆索体系刚度的优化, 是合理的中塔形式。Abstract: In order to discuss the static and dynamic properties differences between three-tower and two-tower suspension bridges, and select the rational structure type of mid-tower, based on the Taizhou Yangtze River Bridge, the 3D space finite element models of two-tower suspension bridge and three-tower suspension bridges with concrete mid-tower and steel mid-tower were set up by finite displacement theory and the static and seismal effects were analyzed under various structural parameters. Analysis result shows that compared with two-tower suspension bridge, because the mid-tower is lack of effective restraints from side cables, three-tower suspension bridge has lower total stiffness, lower natural frequency and larger deflection-to-span ratio of main girder. Under vehicle loads, the anti-slipping safety factor between main cable and saddle, the forces of mid-tower and the deflection-to-span ratio of main girder are not important for two-tower suspension bridge, but become controlling indices for three-tower suspension bridge. The indices are related to the anti-pushing rigidity of mid-tower, but have incompatible demands for the rigidity. Under vehicle loads, when the steel mid-tower with upside-down Y shape is selected, the anti-slipping safety factor between main cable and saddle of mid-tower is 2.17, the maximum stress of mid-tower is 182 MPa, the deflection-to-span ratio of main girder is 1/210, and they meet correlative demands. Obviously, due to the application of steel mid-tower, the indices are rationally considered, the stiffness optimization of components and cable system is achieved, so, it is an appropriate structure for mid-tower.
-
表 1 汽车荷载作用下主梁位移
Table 1. Displacements of main girders under vehicle loads
计算模型 两塔 三塔(砼中塔) 三塔(钢中塔) 上挠 下挠 上挠 下挠 上挠 下挠 绝对数值 最大竖向位移/m 1.449 2.756 3.712 5.099 3.877 5.183 梁端水平位移/m 0.562 1.071 1.228 相对比值 最大竖向位移 1.00 1.00 2.56 1.85 2.68 1.88 梁端水平位移 1.00 1.91 2.19 注: 表中的相对比值均为三塔(混凝土中塔)、三塔(钢中塔) 计算值与两塔计算值的比值, 下同。 表 2 汽车荷载作用下主塔内力与位移
Table 2. Forces and displacements of towers under vehicle loads
计算模型 两塔 三塔(砼中塔) 三塔(钢中塔) 桥塔 边塔 中塔 边塔 中塔 绝对数值 塔顶位移/m 0.196 0.188 2.105 0.186 2.356 塔底纵向弯矩/ (MN·m) 237 231 2 460 229 2 848 相对比值 塔顶位移 1.00 0.96 10.74 0.95 12.02 塔底纵向弯矩 1.00 0.97 10.38 0.97 12.02 表 3 汽车荷载作用下主缆抗滑安全系数
Table 3. Anti-slipping safety factors between main cables and saddles
计算模型 两塔 三塔(砼中塔) 三塔(钢中塔) 桥塔 边塔 中塔 边塔 中塔 抗滑安全系数 34.47 11.80 2.15 11.85 2.17 表 4 纵风作用下梁塔水平位移
Table 4. Displacements of girders and towers under longitudinal wind
计算模型 两塔 三塔(砼中塔) 三塔(钢中塔) 边塔 中塔 边塔 中塔 绝对数值 梁端水平位移/m 0.247 0.362 0.312 塔顶位移/m 0.016 0.021 0.244 0.020 0.234 相对比值 梁端水平位移 1.00 1.47 1.26 塔顶位移 1.00 1.30 15.25 1.30 14.63 表 5 横风作用下主梁内力与位移
Table 5. Forces and displacements of main girders under lateral wind
计算模型 两塔 三塔(砼中塔) 三塔(钢中塔) 绝对数值 跨中主梁横向位移/m 1.208 0.677 0.792 跨中主梁横向弯矩/ (MN·m) 376 285 305 中塔处主梁横向弯矩/ (MN·m) 541 593 相对比值 跨中主梁横向位移 1.00 0.56 0.66 跨中主梁横向弯矩 1.00 0.76 0.81 中塔处主梁横向弯矩 1.44 1.58 表 6 横风作用下主塔内力与位移
Table 6. Forces and displacements of towers under lateral wind
计算模型 两塔 三塔(砼中塔) 三塔(钢中塔) 桥塔 边塔 中塔 边塔 中塔 绝对数值 塔顶横向位移/m 0.116 0.109 0.139 0.109 0.227 塔底横向弯矩/ (MN·m) 131 126 205 126 231 相对比值 塔顶横向位移 1.00 0.94 1.20 0.94 1.95 塔底横向弯矩 1.00 0.96 1.56 0.96 1.76 表 7 结构自振特性
Table 7. Natural vibration characteristics of structures
振型阶次 两塔 三塔(砼中塔) 三塔(钢中塔) 频率/Hz 振型描述 频率/Hz 振型描述 频率/Hz 振型描述 1 0.071 1阶正对称侧弯 0.063 1阶反对称竖弯 0.067 1阶反对称竖弯 2 0.079 1阶反对称竖弯 0.071 1阶反对称侧弯 0.070 1阶反对称侧弯 3 0.118 2阶反对称竖弯 0.087 2阶反对称竖弯 0.092 1阶正对称侧弯 4 0.148 1阶正对称竖弯 0.095 1阶正对称侧弯 0.095 2阶反对称竖弯 5 0.200 2阶正对称竖弯 0.116 1阶正对称竖弯 0.117 1阶正对称竖弯 6 0.226 1阶反对称侧弯 0.118 3阶反对称竖弯 0.136 3阶反对称竖弯 0.382 1阶反对称扭转 0.319 1阶反对称扭转 0.286 1阶反对称扭转 0.327 1阶正对称扭转 0.329 1阶正对称扭转 0.330 1阶正对称扭转 表 8 地震水平位移
Table 8. Horizontal displacements under earthquake
计算模型 两塔 三塔(砼中塔) 三塔(钢中塔) 绝对数值 梁端/m 1.181 1.237 0.865 边塔顶/m 0.074 0.091 0.135 中塔顶/m 0.831 0.713 相对比值 梁端 1.00 1.05 0.73 边塔顶 1.00 1.23 1.82 中塔顶 11.23 9.64 表 9 地震内力
Table 9. Forces under earthquake
计算模型 两塔 三塔(砼中塔) 三塔(钢中塔) 桥塔 边塔 中塔 边塔 中塔 绝对数值 轴力/MN 50.8 52.0 46.1 65.3 25.1 剪力/MN 10.5 10.2 13.0 14.5 8.6 弯矩/ (MN·m) 472 435 1 240 580 1 052 相对比值 轴力 1.00 1.02 0.91 1.29 0.49 剪力 1.00 0.97 1.24 1.38 0.82 弯矩 1.00 0.92 2.63 1.23 2.23 -
[1] FORSBERG T, PETERSEN A. The challenge of constructing a bridge over the Chacao Channel[C]//IABSE: IABSE Conference on Cable-Supported Bridges-Challenging Technical Limits. Zurich: IABSE, 2001: 1-8. [2] GIMSING N J. Cable Supported Bridges: Concept and Design[M]. Second Edition. New York: John Wiley & Sons Inc., 1997. [3] FORSBERG T. Multi-span suspension bridges[J]. Steel Structures, 2001, 11 (1): 63-73. [4] YOSHIDA O, OKUDA M, MORIYA T. Structural characteristics and applicability of four-span suspension bridge[J]. Journal of Bridge Engineering, 2004, 9 (5): 453-463. doi: 10.1061/(ASCE)1084-0702(2004)9:5(453) [5] 邹科官, 王浩, 梁书亭. 中央扣对三塔悬索桥动力特性的影响[J]. 建筑科学与工程学报, 2009, 26 (4): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200904009.htmZOU Ke-guan, WANG Hao, LIANG Shu-ting. Influences of central buckles on dynamic behaviors of triple-tower suspension bridge[J]. Journal of Architecture and Civil Engineering, 2009, 26 (4): 49-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG200904009.htm [6] 王萍. 多塔连续体系悬索桥静动力特性的研究[D]. 成都: 西南交通大学, 2007.WANG Ping. The study on the static and dynamic performance of multi-tower continuous suspension bridge[D]. Chengdu: Southwest Jiaotong University, 2007. (in Chinese) [7] 张新军, 赵孝平. 三塔悬索桥的抗风稳定性研究[J]. 公路, 2008 (11): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200811016.htmZHANG Xin-jun, ZHAO Xiao-ping. A study on wind stability of three-tower suspension bridges[J]. Highway, 2008 (11): 67-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200811016.htm [8] 邓育林, 彭天波, 李建中, 等. 大跨度三塔悬索桥动力特性及抗震性能研究[J]. 振动与冲击, 2008, 27 (9): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200809028.htmDENG Yu-lin, PENG Tian-bo, LI Jian-zhong, et al. Study on dynamic characteristic and aseismic performance of a longspan triple-tower suspension bridge[J]. Journal of Vibration and Shock, 2008, 27 (9): 105-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200809028.htm [9] 杨进, 徐恭义, 韩大章. 泰州长江公路大桥三塔两跨悬索桥总体设计与结构选型[J]. 桥梁建设, 2008 (1): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200801009.htmYANG Jin, XU Gong-yi, HAN Da-zhang, et al. Overall design and structural type selection of three-tower and twospan suspension bridge of Taizhou Changjiang River Highway Bridge[J]. Bridge Construction, 2008 (1): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200801009.htm [10] 万田保, 杨进. 三塔两跨悬索桥2个重要的技术指标和中塔疲劳验算加载模式[J]. 世界桥梁, 2008 (1): 8-10, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL200801002.htmWAN Tian-bao, YANG Jin. Two important technical indices and loading mode for fatigue check calculation of intermediate tower of three-tower and two-span suspension bridge[J]. World Bridges, 2008 (1): 8-10, 27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL200801002.htm [11] 阮静, 吉林, 祝金鹏. 三塔悬索桥中塔结构选型分析[J]. 山东大学学报: 工学版, 2008, 38 (2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY200802024.htmRUAN Jing, JI Lin, ZHU Jin-peng. Structure style selection of the mid-tower of a three-tower suspension bridge[J]. Journal of Shandong University: Engineering Science, 2008, 38 (2): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY200802024.htm [12] 朱本瑾. 多塔悬索桥的结构体系研究[D]. 上海: 同济大学, 2007.ZHU Ben-jin. Structural systemresearch of multi-tower suspension bridge[D]. Shanghai: Tongji University, 2007. (in Chinese) [13] 罗喜恒. 复杂悬索桥施工过程精细化分析研究[D]. 上海: 同济大学, 2004.LUO Xi-heng. Refined analysis on complicated suspension bridge in construction[D]. Shanghai: Tongji University, 2004. (in Chinese) -