Identification method of road hot zone based on GIS
-
摘要: 基于地理信息系统以及热区基本模型, 研究了道路热区的鉴别方法。该方法对道路网依据一定优先权进行合并以获取道路基本单元, 模拟了交通事故的空间分布, 并采用Monte Carlo法定义各道路基本单元交通事故数阈值, 通过检验道路基本单元的空间邻近性得到热区, 并对上海世博园周边道路热区进行了鉴别。分析结果表明: 道路网经合并后, 不规则道路基本单元的百分比由41.5%下降到14.8%;世博园周边共有84个仅涉及车辆、33个涉及行人的热区, 与实际相符。可见, 该方法能有效鉴别道路危险区域。Abstract: Based on GIS and the basic model of hot zone, the identification method of road hot zone was studied. Road networks were merged by following a priority sequence, and the basic spatial units (BSU) of road were obtained. The spatial distribution of traffic accidents was simulated, and the threshold value of traffic accident for each BSU was defined by using Monte Carlo method. The spatial contiguities of BSUs were examined to obtain hot zones, and the hot zones around Shanghai Expo Venue were identified. Analysis result shows that the share of irregular BSUs decreases from 41.5% to 14.8% after merging road networks. There are 84 hot zones involving only vehicles and 33 hot zones involving pedestrians, which accords with the real situation. So the method can effectively identify road hazardous locations.
-
Key words:
- traffic safety /
- hazardous road location /
- geographical information system /
- hot zone /
- road crash
-
表 1 原始道路网各路段的长度统计
Table 1. Statistics of original road link lengths
长度区间/m (0, 25) [25, 50) [50, 75) [75, 100) [100, +∞) 路段数 120 205 218 197 980 表 2 分割后各道路基本单元的长度统计
Table 2. Statistics of basic road unit lengths after segmenting
长度区间/m (0, 25) [25, 50) [50, 75) [75, 100) 100 道路基本单元数(占总数百分比/%) 397 (9.6) 493 (12.0) 422 (10.2) 397 (9.6) 2 410 (58.5) 表 3 合并后各路段的长度统计
Table 3. Statistics of road link lengths after merging
长度区间/m (0, 25) [25, 50) [50, 75) [75, 100) [100, +∞) 路段数 7 20 23 35 418 表 4 合并后的道路网经分割后各道路基本单元的长度统计
Table 4. Statistics of basic spatial unit lengths based on merging road links after segmenting
长度区间/m (0, 25) [25, 50) [50, 75) [75, 100) 100 道路基本单元数(占总数百分比/%) 130 (3.6) 147 (4.1) 127 (3.6) 124 (3.5) 3 036 (85.2) 表 5 热区统计
Table 5. Statistics of hot zones
热区类型 仅涉及车辆 涉及行人 热区总数 84 33 热区中道路基本单元数 最小值 2 2 最大值 11 5 道路基本单元上发生的交通事故数 最小值 18 3 最大值 511 26 -
[1] ELVIK R. State-of-the-art approaches to road accident black spot management and safety analysis of road networks[R]. Oslo: Institute of Transport Economics, 2007. [2] LOO B P Y. The identification of hazardous road locations: a comparison of the black site and hot zone methodologies in Hong Kong[J]. International Journal of Sustainable Transportation, 2009, 3 (3): 187-202. doi: 10.1080/15568310801915583 [3] BLACK W R. Network autocorrelation in transport network and flow systems[J]. Geographical Analysis, 1992, 24 (3): 207-222. [4] BLACK W R, THOMAS I. Accidents on Belgium's motorways: a network autocorrelation analysis[J]. Journal of Transport Geography, 1998, 6 (1): 23-31. doi: 10.1016/S0966-6923(97)00037-9 [5] FLAHAUT B, MOUCHART M, MARTIN E S, et al. The local spatial autocorrelation and the kernel method for identifying black zones: a comparative approach[J]. Accident Analysis and Prevention, 2003, 35 (6): 991-1004. doi: 10.1016/S0001-4575(02)00107-0 [6] FLAHAUT B. Impact of infrastructure and local environment on road unsafety: logistic modeling with spatial autocorrelation[J]. Accident Analysis and Prevention, 2004, 36 (6): 1055-1066. doi: 10.1016/j.aap.2003.12.003 [7] MORANP A P. The interpretation of statistical maps[J]. Journal of the Royal Statistical Society, Series B: Methodological, 1948, 10 (2): 243-251. [8] ANSELIN L. Local indicators of spatial association—LISA[J]. Geographical Analysis, 1995, 27 (2): 93-115. [9] YAMADAI, THILL J C. Local indicators of network-constrained clusters in spatial patterns represented by a link attribute[J]. Annals of the Association of American Geographers, 2010, 100 (2): 269-285. doi: 10.1080/00045600903550337 [10] GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992, 24 (3): 189-206. [11] MOONS E, BRIJS T, WETS G. Identifying hazardous road locations: hot spots versus hot zones[C]//GAVRILOVA M L, TAN C J K. Transactions on Computational Science VI. Heidelberg: Springer-Verlag Berlin Heidelberg, 2009: 288-300. [12] YAMADA I, THILL J C. Local indicators of network-constrained clusters in spatial point patterns[J]. Geographical Analysis, 2007, 39 (3): 268-292. [13] LOO B P Y. Validating crash locations for quantitative spatial analysis: a GIS-based approach[J]. Accident Analysis and Prevention, 2006, 38 (5): 879-886. [14] OPENSHAW S, CHARLTON M E, WYMER C, et al. A mark 1 geographical analysis machine for the automated analysis of point data sets[J]. International Journal of Geographical Information Systems, 1987, 1 (4): 335-358. -