Construction risk analysis of butterfly arch continuous girder bridge with large angle V-shaped pier
-
摘要: 基于HGMFN综合评价方法, 分析了桥梁工程施工过程风险问题, 提出了定量研究V撑施工风险因素的实用方法。根据层次分析法并结合灰色理论, 确定了施工过程最大的风险因素, 进行了施工方案比选。运用ANSYS有限元软件, 对V撑应力状态进行了数值模拟。根据蒙特卡洛原理, 采用径向基函数人工神经网络进行风险概率分析。研究结果表明: 当结构应力状态仿真次数超过200万次时, V撑顶部与主梁相接处失效风险比斜腿根部大8.5%, 为施工过程中主要的结构失效风险发生部位; HGMFN综合评价法可以实现对风险因素的定量分析, 具有较高的风险分析计算精度和效率。Abstract: The risk analysis problem of bridge construction was studied based on HGMFN comprehensive evaluation method, and a practical approach was proposed for V-shaped pier in construction process.The highest risk factor in V-shaped pier construction was confirmed by using AHP and grey theory, and construction plan comparison was carried out.Numerical simulation of stress state for V-shaped pier was done by using ANSYS software.Risk factor analysis was carried out on the basis of Monte Carlo theory and radial basis function artificial neural network technology.Analysis result indicates that when the simulation of structural stress state is more than two million times, the connection between V-shaped pier top and main beam has 8.5% higher failure risk than root of slant leg, which is the main structure failure risk location.HGMFN comprehensive evaluation method can analyze risk factors quantitatively, and has higher risk analysis accuracy and efficiency.
-
表 1 材料参数
Table 1. Material parameters
构件名称 混凝土强度等级 弹性模量/GPa 等效弹性模量/GPa 泊松比 重度/(kN·m-3) 等效重度/(kN·m-3) 混凝土 主梁 C50 34.5 35.8 0.20 26.00 27.03 V撑 C40 32.5 35.7 0.20 26.00 27.23 承台 C25 28.0 28.7 0.20 26.00 26.20 预应力钢束 — 195.0 — 0.30 78.50 — 钢板 — 181.0 — 0.30 78.50 — 拉索 — 181.0 — 0.30 78.50 — 表 2 各截面最大应力值
Table 2. Maximum stress of each section
载面 A-A B-B C-C D-D 应力值/MPa -1.41 1.38 0.30 1.74 表 3 风险因素比较标度
Table 3. Comparison standards of risk indicators
比较标度 含义 1 2个因素重要性相同 3 2个因素中前者比后者略微重要 5 2个因素中前者比后者明显重要 7 2个因素中前者比后者强烈重要 9 2个因素中前者比后者极端重要 2、4、6、8 上述两判断的中间值 表 4 平均随机一致性系数
Table 4. Mean random consistency coefficients
n 1 2 3 4 5 6 7 RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 表 5 评估矩阵对总目标的相对权重
Table 5. Relative weights of assessment matrix to final target
指标 B1 B2 B3 权重QA 0.285 7 0.142 8 0.571 5 表 6 评估矩阵对各子目标的相对权重
Table 6. Relative weights of assessment matrix to each subgoal
指标 C1 C2 C3 C4 C5 C6 权重QB1 0.075 5 0.268 4 0.302 2 0.059 0 0.156 6 0.138 3 权重QB2 0.056 6 0.158 3 0.185 2 0.079 0 0.171 5 0.349 5 权重QB3 0.075 5 0.053 3 0.246 4 0.199 0 0.159 0 0.266 7 表 7 风险指标权重排序
Table 7. Rank ordering of risk index weights
风险指标 结构特殊性 资金到位情况 施工工艺 设备安全 工人素质 自然因素 权重 0.253 6 0.241 8 0.160 0 0.141 9 0.129 7 0.072 8 表 8 施工风险指标对不同施工方案影响程度评分
Table 8. Ratings of construction risk indicator impact on different working schemes
风险指标 满堂支架施工法D1(i) 劲性骨架挂模施工法D2(i) 成本安全 施工工期 人员安全 成本安全 施工工期 人员安全 结构特殊性 7.8 8.1 8.5 7.7 7.9 8.3 资金到位情况 8.1 8.3 8.7 8.1 8.2 8.6 施工工艺 8.3 8.6 8.8 8.1 9.1 8.4 设备安全 8.6 8.8 8.9 8.6 8.5 9.1 工人素质 8.7 9.1 9.2 8.7 8.7 9.2 自然因素 9.4 9.4 9.7 9.6 9.5 9.6 表 9 参数变量随机分布
Table 9. Random distribution of parameter variables
参数变量 均值 变异系数值 钢筋混凝土重度/(kN·m-3) 26.00 0.06 材料弹性模量/GPa 32.5 0.10 直线束预加力值/kN 1 745.00 0.05 曲线束预加力值/kN 2 372.00 0.05 表 10 神经网络样本训练数据
Table 10. Training data of neural network samples
序号 弹性模量/MPa 材料重度/(kN·m-3) 曲线筋预应力/kN 直线筋预应力/kN 计算截面最大应力/MPa A-A B-B C-C D-D 1 32 500 26.0 2 372.0 1 745.0 -1.41 1.38 0.30 1.74 2 34 231 26.3 2 375.0 1 781.4 -1.52 1.30 0.33 1.80 3 32 637 26.1 2 376.2 1 698.3 -1.45 1.16 0.31 1.82 4 32 014 25.1 2 536.5 1 732.5 -1.39 1.13 0.41 1.86 5 36 250 24.2 2 262.5 1 936.1 -1.26 1.83 0.60 2.13 6 37 166 23.1 2 472.3 1 962.4 -1.16 2.16 0.64 2.81 7 36 286 25.2 2 601.0 1 596.0 -1.17 1.94 0.06 2.03 8 26 959 26.9 2 147.8 1 759.7 -1.49 0.77 0.46 2.13 9 38 317 25.4 2 271.3 1 724.6 -1.26 1.58 0.25 1.74 10 30 268 24.9 2 492.6 1 925.2 -1.53 1.17 0.28 1.25 11 35 392 25.2 2 649.3 1 473.6 -1.24 1.63 0.40 2.06 12 29 415 24.9 2 383.1 1 896.2 -1.25 1.47 0.53 2.25 13 33 139 27.6 2 185.0 1 704.6 -1.60 0.91 0.42 1.85 14 42 462 28.9 2 247.8 1 452.6 -1.27 1.57 0.49 1.84 15 28 274 26.2 2 418.2 1 687.4 -1.26 1.25 0.54 2.33 16 34 015 22.5 2 478.3 1 639.5 -1.37 2.43 1.86 2.64 17 29 742 22.6 2 457.4 1 635.3 -1.85 0.55 0.44 2.36 18 31 641 24.2 2 360.6 1 907.5 -1.86 1.36 0.75 1.60 19 32 526 24.6 2 374.6 1 837.7 -1.26 1.65 0.37 2.97 20 29 453 25.7 2 474.7 1 853.6 -1.54 0.95 0.45 1.70 表 11 结构失效概率预测结果
Table 11. Prediction results of structural failure probabilities
计算次数/106 截面 A-A B-B C-C D-D 0.5 < 10-5 0.006 1 < 10-5 0.054 3 1.5 < 10-5 0.008 6 < 10-5 0.094 1 2.0 < 10-5 0.008 9 < 10-5 0.093 9 -
[1] 牛宏. 大跨度连续刚构桥建设期风险分析研究[D]. 西安: 长安大学, 2009.NIU Hong. Risk analysis research for long-span continuous rigid-frame bridge during construction[D]. Xi'an: Chang'an University, 2009. (in Chinese). [2] 龚俊虎, 王华成, 黄北平. V形刚构拱组合桥的梁拱组合效应分析[J]. 铁道工程学报, 2010, 27(6): 61-64, 78. doi: 10.3969/j.issn.1006-2106.2010.06.014GONG Jun-hu, WANG Hua-cheng, HUANG Bei-ping. Analysis of combination effect of beam-arch of V-shaped rigid-frame and arch structure combined bridge[J]. Journal of Railway Engineering Society, 2010, 27(6): 61-64, 78. (in Chinese). doi: 10.3969/j.issn.1006-2106.2010.06.014 [3] 龚俊虎. 大跨度V形墩连续刚构与拱组合桥受力特性研究[D]. 成都: 西南交通大学, 2009.GONG Jun-hu. Research on mechanical characteristics of combined bridge of V-shaped pier rigid-frame and arch struc-ture[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese). [4] 王战国, 俞亚南, 偶昌宝. 大跨度预应力V形墩连续刚构桥线形施工控制[J]. 武汉理工大学学报: 交通科学与工程版, 2006, 30(3): 504-507. doi: 10.3963/j.issn.2095-3844.2006.03.037WANG Zhan-guo, YU Ya-nan, OU Chang-bao. A lignment control analysis of a prestressed-concrete V-shape pier continu-ous rigid frame bridge[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2006, 30(3): 504-507. (in Chinese). doi: 10.3963/j.issn.2095-3844.2006.03.037 [5] 陈后军. 高速铁路V形钢箱连续梁桥设计研究[D]. 上海: 同济大学, 2006.CHEN Hou-jun. Research on designing scheme for V-shaped continuous steel box girder bridge in high-speed railway[D]. Shanghai: Tongji University, 2006. (in Chinese). [6] 曹峰. V型支撑预应力钢筋混凝土连续刚构桥空间效应分析及其试验研究[D]. 西安: 长安大学, 2009.CAO Feng. V-supported prestressed concrete continuous rigid frame bridge spatial analysis and experimental study[D]. Xi'an: Chang'an University, 2009. (in Chinese). [7] 黄海燕, 麻荣永. 大坝安全模糊风险分析初探[J]. 广西大学学报: 自然科学版, 2003, 28(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ200301004.htmHUANG Hai-yan, MA Rong-yong. Preliminary study on fuzzy risk analysis of dam safety[J]. Journal of Guangxi University: Natural Science Edition, 2003, 28(1): 14-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ200301004.htm [8] WANG Ying-ming, ELHAG T M S. A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks[J]. Expert Systems with Applications, 2007, 32(2): 336-348. doi: 10.1016/j.eswa.2005.11.029 [9] WANG Ying-ming, LIU Jun, ELHAG T M S. An integrated AHP-DEA methodology for bridge risk assessment[J]. Computers and Industrial Engineering, 2008, 54(4): 513-525. https://www.sciencedirect.com/science/article/pii/S0360835207002045 [10] ERTAY T, RUAN D, TUZKAYA U R. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems[J]. Information Sciences, 2006, 176(3): 237-262. doi: 10.1016/j.ins.2004.12.001 [11] 包龙生, 刘克同, 于玲, 等. 基于灰色层次分析法的桥梁施工方案多目标风险分析及评价[J]. 沈阳建筑大学学报: 自然科学版, 2009, 25(4): 663-669. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200904010.htmBAO Long-sheng, LIU Ke-tong, YU Ling, et al. Multi-objective risk analysis and documents assessment of bridge construction based on AHP-GRAY[J]. Journal of Shenyang Jianzhu University: Natural Science, 2009, 25(4): 663-669. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200904010.htm [12] 孙方田, 马一太, 李敏霞. 基于灰色-层次理论的热水器综合评价研究[J]. 太阳能学报, 2008, 29(2): 204-208. doi: 10.3321/j.issn:0254-0096.2008.02.015SUN Fang-tian, MA Yi-tai, LI Min-xia. Comprehensive evaluation of water heater based on the grey-analytic hierarchy theory[J]. Acta Energiae Solaris Sinica, 2008, 29(2): 204-208. (in Chinese). doi: 10.3321/j.issn:0254-0096.2008.02.015 [13] 单德山, 李乔, 张吉刚. 蒙特卡罗法在桥梁损伤识别中的应用[J]. 重庆交通大学学报: 自然科学版, 2009, 28(5): 844-847. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200905010.htmSHAN De-shan, LI Qiao, ZHANG Ji-gang. Application of Monte-Carlo method to bridge damage identification[J]. Journal of Chongqing Jiaotong University: Natural Science, 2009, 28(5): 844-847. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200905010.htm [14] 冯清海, 袁万城. BP神经网络和RBF神经网络在墩柱抗震性能评估中的比较研究[J]. 结构工程师, 2007, 23(5): 41-47, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC200705009.htmFENG Qing-hai, YUAN Wan-cheng. Comparative study on BP neural network and RBF neural network in performance evaluation of seismic resistance for pier columns[J]. Struc-tural Engineers, 2007, 23(5): 41-47, 69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC200705009.htm [15] 刘兆惠. 基于灰色-径向基函数神经网络的交通事故多元预测模型[J]. 交通运输工程学报, 2009, 9(5): 94-98. http://transport.chd.edu.cn/article/id/200905017LIU Zhao-hui. Multifactor prediction model for traffic acci-dent based on grey-radial basis function neural network[J]. Journal of Traffic and Transportation Engineering, 2009, 9(5): 94-98. (in Chinese). http://transport.chd.edu.cn/article/id/200905017 [16] 张涛, 赵登福, 周琳, 等. 基于RBF神经网络和专家系统的短期负荷预测方法[J]. 西安交通大学学报, 2001, 35(4): 331-334. doi: 10.3321/j.issn:0253-987X.2001.04.001ZHANG Tao, ZHAO Deng-fu, ZHOU Lin, et al. Short-term load forecasting using radial basis function networks and expert system[J]. Journal of Xi'an Jiaotong University, 2001, 35(4): 331-334. (in Chinese). doi: 10.3321/j.issn:0253-987X.2001.04.001 [17] 王立峰, 肖子旺, 王子强. 基于RBF神经网络的V撑施工过程风险分析[J]. 武汉理工大学学报, 2011, 33(5): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201105029.htmWANG Li-feng, XIAO Zi-wang, WANG Zi-qiang. Risk analysis of V-shaped pier in construction process by means of RBF artificial neural network[J]. Journal of Wuhan University of Technology, 2011, 33(5): 137-141. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201105029.htm [18] 王峙, 范飞. 工程机械融资租赁的风险控制[J]. 筑路机械与施工机械化, 2012, 29(1): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201201040.htmWANG Zhi, FAN Fei. Risk control of financial leasing of construction machinery[J]. Road Machinery and Construc-tion Mechanization, 2012, 29(1): 82-84. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201201040.htm [19] 黄玲玉. 大跨度V形墩连续刚构拱组合桥结合部模型试验研究[D]. 成都: 西南交通大学, 2006.HUANG Ling-yu. Model testing study on the node of com-bined bridge of V-shaped pier rigid-frame and arch structure[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese). [20] 邹纪民. 浙江东阳江大桥V形墩施工[J]. 公路, 2002(12): 14-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200212004.htmZOU Ji-min. V-shaped pier construction of Dongyang River Bridge of Zhejiang[J]. Highway, 2002(12): 14-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200212004.htm [21] 李国亮, 刘钊. V形刚构桥施工中倒三角区域支架的拆除时机分析[J]. 公路交通科技, 2005, 22(8): 95-97, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200508021.htmLI Guo-liang, LIU Zhao. Study on the demolishment sequence of scaffolds for the inverted-triangle area of the rigid-frame bridges with V-piers[J]. Journal of Highway and Transportation Research and Development, 2005, 22(8): 95-97, 101. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200508021.htm -