Compression method of traffic flow data based on compressed sensing
-
摘要: 为准确获得用于数据压缩的变换矩阵, 引入了基于压缩传感的交通流量数据压缩方法, 在数据压缩端无需考虑变换矩阵的选择问题, 直接通过高斯投影实现高效数据压缩。首先验证了交通流量数据在经过K-SVD方法训练过的字典上能够实现稀疏表达; 然后在数据压缩端, 通过具有限制性等距条件的随机矩阵将原始高维数据投影到低维空间上, 实现数据的高效快速压缩; 最后在数据传输后, 通过凸优化算法在交通信息处理端完成数据解压缩。以美国某高速公路线圈传感器采集到的交通流量数据, 对本文方法进行了验证。试验证明: 该方法能够实现快速高效的压缩编码, 当压缩比为4∶1时, 解压缩相对误差仅为0.060 8。Abstract: In order to obtain transformation matrix accurately, a new compression method of traffic flow data based on compressed sensing was introduced.The original data were projected into the low-dimension space directly by Gauss projection regardless of transformation matrix selection at the data compression side.Firstly, traffic flow data were proved to have sparse representation under the K-SVD trained dictionary.Secondly, original high-dimension data were projected into low-dimension space at the data compression side by using the random matrix with restricted isometry property, which made efficient and rapid data compression possible.Finally, after data transmission, data decompression were accomplished by convex algorithm at the data processing side.The traffic flow data obtained from the coil sensors located on a certain highway of America were used to validated the new method.The experimental result shows that the data compression method is fast and efficient.When the compression ratio is 4∶1, the relative error of data decompression is only 0.060 8.
-
表 1 检测站地理位置
Table 1. Geographical locations of inspection stations
检测站 经度/(°) 纬度/(°) 所属高速路 方向 1 93.40 45.08 I-94 北 2 93.31 45.07 表 2 线圈传感器的检测值
Table 2. Detection values of coil sensors
时间段 车流量/(veh·h-1) 占有率/% 1 2 760 10 2 1 680 7 3 1 920 6 4 2 400 10 5 2 520 6 6 1 320 7 7 1 440 7 8 2 880 11 9 2 160 6 10 1 440 8 11 2 040 7 12 2 040 6 13 2 280 10 14 2 280 4 15 960 8 16 2 160 8 17 1 440 10 18 3 480 10 19 2 640 13 20 2 400 7 表 3 稀疏表达误差分析
Table 3. Error analysis of sparse representation
原始数长度 字典原子个数 稀疏表达选用原子个数 相对误差‖F-f‖2/‖F‖2 120 2 000 10 0.033 2 表 4 压缩传感误差分析
Table 4. Error analysis of compressed sensing
原始数据长度 压缩后数据长度 压缩比 相对误差‖F-F′‖2/‖F‖2 120 30 4∶1 0.060 8 表 5 数据压缩端对比
Table 5. Comparison at data compression side
乘法次数 加法次数 计算量 正交变换 N2 N(N-1) O(N2) 压缩传感 MN M(N-1) O(MN) -
[1] 肖扬, 鲁凌云, 高爽, 等. 基于二维离散小波变换的智能交通系统数据去噪声压缩[J]. 北京交通大学学报, 2004, 28(5): 1-5. doi: 10.3969/j.issn.1673-0291.2004.05.001XIAO Yang, LU Ling-yun, GAO Shuang, et al. Traffic data denoising compression for intelligent traffic systems based on2-D discrete wavelet transformation[J]. Journal of Beijing Jiaotong University, 2004, 28(5): 1-5. (in Chinese). doi: 10.3969/j.issn.1673-0291.2004.05.001 [2] 练秋生, 王成儒, 孔令富. 心电图压缩算法中的小波基选择[J]. 计算机工程与应用, 2002, 38(18): 6-8. doi: 10.3321/j.issn:1002-8331.2002.18.003LIAN Qiu-sheng, WANG Cheng-ru, KONG Ling-fu. The choice of wavelet in electrocardiogram compression algorithm[J]. Computer Engineering and Applications, 2002, 38(18): 6-8. (in Chinese). doi: 10.3321/j.issn:1002-8331.2002.18.003 [3] COIFMAN R R, WICKERHAUSER M V. Entropy-based algorithms for best basis selection[J]. IEEE Transactions on Information Theory, 1992, 38(2): 713-718. doi: 10.1109/18.119732 [4] 蔡敦虎. 多种小波基的图像去噪性能研究[D]. 武汉: 武汉大学, 2003.CAI Dun-hu. The research on the performance of manifold wavelet basis in image denoising[D]. Wuhan: Wuahan University, 2003. (in Chinese). [5] 费铭薇, 乐全明, 张沛超, 等. 电力系统故障录波数据压缩与重构小波基选择[J]. 电力系统自动化, 2005, 29(17): 64-67, 97. doi: 10.3321/j.issn:1000-1026.2005.17.012FEI Ming-wei, YUE Quan-ming, ZHANG Pei-chao, et al. Wavelets selection of compression and reconstruction algorithm based on digital recorded data from a faulted power system[J]. Automation of Electric Power Systems, 2005, 29(17): 64-67, 97. (in Chinese). doi: 10.3321/j.issn:1000-1026.2005.17.012 [6] 魏玉芬, 梦艳君. 图像编码压缩小波基的选择[J]. 装备制造技术, 2009(4): 49-50, 61. doi: 10.3969/j.issn.1672-545X.2009.04.020WEI Yu-fen, MENG Yan-jun. The choice of orthogonal wavelets base in image compression[J]. Equipment Manufac-turing Technology, 2009(4): 49-50, 61. (in Chinese). doi: 10.3969/j.issn.1672-545X.2009.04.020 [7] 赵志强, 张毅, 胡坚明, 等. 基于PCA和ICA的交通流量数据压缩方法比较研究[J]. 公路交通科技, 2008, 25(11): 109-118. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200811022.htmZHAO Zhi-qiang, ZHANG Yi, HU Jian-ming, et al. Compara-tive study of PCA and ICA based traffic flow compression[J]. Journal of Highway and Transportation Research and Devel-opment, 2008, 25(11): 109-118. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200811022.htm [8] QU Li, HU Jian-ming, ZHANG Yi. A flow volumes data compression approach for traffic network based on principal component analysis[C]∥IEEE. Proceedings of the2007IEEE Intelligent Transportation Systems Conference. Seattle: IEEE, 2007: 125-130. [9] 耿彦斌, 于雷, 武旭, 等. 基于信号处理技术的ITS数据压缩方法与应用[J]. 土木工程学报, 2006, 39(11): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200611017.htmGENG Yan-bin, YU Lei, WU Xu, et al. Signal-processing-based ITS data compression techniques and applications[J]. China Civil Engineering Journal, 2006, 39(11): 107-113. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200611017.htm [10] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083 [11] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582 [12] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi: 10.1109/MSP.2007.914731 [13] 金坚, 谷源涛, 梅顺良. 压缩采样技术及其应用[J]. 电子与信息学报, 2010, 32(2): 470-475. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201002041.htmJIN Jian, GU Yuan-tao, MEI Shun-liang. An introduction to compressive sampling and its applications[J]. Journal of Electronics and Information Technology, 2010, 32(2): 470-475. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201002041.htm [14] RAUHUT H, SCHNASS K, VAN DERGHEYNST P. Compressed sensing and redundant dictionaries[J]. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219. https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4494699&contentType=Journals+%26+Magazines [15] CANDES E J, ELDAR Y C, NEEDELL D, et al. Com-pressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1): 59-73. https://www.sciencedirect.com/science/article/pii/S1063520310001156 [16] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.4935&rank=5&q=sparse%20radon%20transform&osm=&ossid= [17] 徐鹏. 信号的稀疏分解及其在脑电信号处理中的应用研究[D]. 成都: 电子科技大学, 2006.XU Peng. Study on sparse decomposition of signal and its application in EEG processing[D]. Chengdu: University of Electronic Science and Technology of China, 2006. (in Chinese). [18] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. https://authors.library.caltech.edu/27144 -