Coupling vibration of wind-vehiche-bridge system for long-span steel truss cable-stayed bridge
-
摘要: 以某大跨度公轨两用钢桁梁斜拉桥为工程背景, 通过车桥组合节段模型风洞试验, 测试了不同状态下车辆和桥梁各自的气动力系数, 采用自主研发桥梁分析软件BANSYS, 分析了不同风速、车速、车载状态下的风-车-桥系统, 研究了车辆位置和双车交会对系统响应的影响。计算结果表明: 当风速为25m.s-1, 车速达到100km.h-1时, 车辆的轮重减载率超过了行车安全性限值, 且当车速达到120km.h-1时, 车辆的竖向加速度超过了行车舒适性限值; 风速较高时沿迎风侧轨道运行车辆的轮重减载率是系统的控制因素; 车辆在空载状态下的各项响应均比在超员状态下的要大; 由于迎风侧车的遮风效应, 在双车交会开始和结束时车辆横向加速度出现突变。Abstract: A long-span road-rail steel truss cable-stayed bridge was taken as an engineering example, the aerodynamic coefficients of vehicle and bridge at different states were measured through wind tunnel test with the section models of vehicle and bridge. Wind-vehicle-bridge system was simulated at different wind speeds, vehicle speeds and vehicle load states by using the self-developed software BANSYS. The influences of vehicle position and two trains passing each other on the system were discussed. Computation result shows that wheel load reduction rate exceeds safety limit value when vehicle speed is up to 100 km·h-1 and wind speed is 25 m·s-1. When vehicle speed is up to 120 km·h-1, vehicle vertical acceleration exceeds comfortable limit value. When wind speed is higher, the wheel load reduction rate of vehicle running on windward side is the control factor for wind-vehicle-bridge system. The unloaded vehicle response is larger than overcrowded vehicle. Due to the wind shielding effect for windward side vehicle, transverse accelerations change suddenly at the beginning and ending of the process for two trains passing each other.
-
表 1 结构动力特性
Table 1. Structural dynamic characteristics
序号 频率/Hz 振型描述 1 0.361 主梁一阶正对称横弯 2 0.366 主梁一阶正对称竖弯 3 1.000 主梁扭转 表 2 车辆和桥梁各自的三分力系数
Table 2. Three-component coefficients of vehicle and bridge
系数 CH CV CM 桥梁 桥上无车时 0.815 0.262 0.076 车辆位于迎风侧 0.809 0.176 0.098 车辆位于背风侧 0.782 0.142 0.094 车辆 独车测试, 无桥 1.003 0.796 -0.110 车辆位于迎风侧 0.921 1.083 -0.070 车辆位于背风侧 0.855 1.177 -1.010 桥梁+双车(迎风侧车) 0.901 -0.200 0.557 桥梁+双车(背风侧车) 0.451 0.375 -0.499 表 3 不同风速下车辆和桥梁响应的最大值
Table 3. Maximum responses of vehicle and bridge at different wind speeds
平均风速/(m·s-1) 0 10 15 20 25 桥梁 跨中横向位移/mm 1.934 4.822 8.896 18.135 26.963 跨中竖向加速度/(m·s-2) 0.198 0.191 0.284 0.220 0.365 车辆 横向加速度/(m·s-2) 1.197 1.199 1.206 1.295 1.374 竖向加速度/(m·s-2) 1.629 1.638 1.383 1.706 1.753 倾覆系数 0.347 0.363 0.369 0.482 0.607 轮重减载率 0.392 0.411 0.407 0.540 0.664 脱轨系数 0.340 0.348 0.306 0.396 0.425 表 4 不同车速下桥梁跨中响应
Table 4. Midspan responses at different vehicle speeds
车速/(km·h-1) 横向位移/mm 竖向加速度/(m·s-2) 横向加速度/(m·s-2) 80 25.435 0.166 0.092 100 27.108 0.256 0.104 120 26.963 0.365 0.123 表 5 不同车辆位置时车辆响应
Table 5. Vehicle responses at different vehicle positions
车辆位置 加速度/(m·s-2) 轮重减载率 脱轨系数 竖向 横向 迎风侧 1.753 1.374 0.664 0.425 背风侧 1.841 1.478 0.585 0.456 表 6 不同车载状态下车辆响应
Table 6. Vehicle responses at different vehicle load states
车载状态 加速度/(m·s-2) 倾覆系数 轮重减载率 脱轨系数 竖向 横向 空载 1.197 1.629 0.347 0.392 0.340 超员 0.851 1.103 0.219 0.235 0.260 表 7 不同车载状态下桥梁跨中响应
Table 7. Midspan responses at different vehicle load states
车载状态 横向位移/mm 竖向加速度/(m·s-2) 横向加速度/(m·s-2) 空载 1.934 0.198 0.120 超员 2.637 0.250 0.129 -
[1] 黄妍. 浅议城市轨道交通综合开发的途径和前景[J]. 铁道勘测与设计, 2007(2): 58-60, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX201205300.htmHUANG Yan. The discussion on the way and prospects for comprehensive development of urban rail transit[J]. Railway Survey and Design, 2007(2): 58-60, 63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX201205300.htm [2] 邹胜勇. 面向可持续发展的城市总体交通结构优化[J]. 交通运输系统工程与信息, 2006, 6(2): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT200602020.htmZOU Sheng-yong. Optimization of urban transit structure based on sustained development[J]. Journal of Transporta-tion Systems Engineering and Information Technology, 2006, 6(2): 106-110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT200602020.htm [3] 夏禾, 徐幼麟, 阎全胜. 大跨度悬索桥在风与列车荷载同时作用下的动力响应分析[J]. 铁道学报, 2002, 24(4): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200204019.htmXIA He, XU You-lin, YAN Quan-sheng. Dynamic response of long span suspension bridge to high wind and running train[J]. Journal of the China Railway Society, 2002, 24(4): 83-91. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200204019.htm [4] 韩万水, 陈艾荣. 随机车流下的风-汽车-桥梁系统空间耦合振动研究[J]. 土木工程学报, 2008, 41(9): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200809016.htmHAN Wan-shui, CHEN Ai-rong. Three-dimensional coup-ling vibration of wind-vehicle-bridge systems under random traffic flow[J]. China Civil Engineering Journal, 2008, 41(9): 97-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200809016.htm [5] 韩燕, 蔡春声. 风-车-桥耦合系统的车桥气动特性[J]. 长沙理工大学学报: 自然科学版, 2009, 6(4): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG200904004.htmHAN Yan, CAI Chun-sheng. The aerodynamic characteris-tics of the vehicle and bridge for the coupled wind-vehicle-bridge system[J]. Journal of Changsha University of Science and Technology: Natural Science, 2009, 6(4): 21-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG200904004.htm [6] 李永乐. 风车桥系统非线性空间耦合振动研究[D]. 成都: 西南交通大学, 2003.LI Yong-le. Nonlinear three-dimensional coupling vibration of wind-vehicle-bridge system[D]. Chengdu: Southwest Jiaotong University, 2003. (in Chinese). [7] AU F T K, CHENG Y S, CHEUNG Y K. Effects of random road surface roughness and long-term deflection of pre-stressed concrete girder and cable-stayed bridges on impact due to moving vehicles[J]. Computers and Structures, 2001, 79(8): 853-872. [8] XU Y L, GUO W H. Dynamic analysis of coupled road vehicle and cable-stayed bridge systems under turbulent wind[J]. Engineering Structures, 2003, 25(4): 473-486. [9] CAI C S, CHEN S R. Framework of vehicle-bridge-wind dynamic analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7/8): 579-607. [10] LI Yong-le, QIANG Shi-zhong, LIAO Hai-li, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(6): 483-507. [11] 李淑慧, 杨一明. 桁架式桥梁检测车仿真设计与应用研究[J]. 筑路机械与施工机械化, 2010, 27(3): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201003034.htmLI Shu-hui, YANG Yi-ming. Research on simulation design and application of trussed bridge inspection vehicle[J]. Road Machinery and Construction Mechanization, 2010, 27(3): 75-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201003034.htm [12] LI Yong-le, LIAO Hai-li, QIANG Shi-zhong. Simplifying the simulation of stochastic wind velocity fields for long cable-stayed bridges[J]. Computers and Structures, 2004, 82(20/21): 1591-1598. [13] JTG/T D60-01—2004, 公路桥梁抗风设计规范[S].JTG/T D60-01—2004, wind-resistant design specification for highway bridges[S]. (in Chinese). [14] 李永乐, 廖海黎, 强士中. 车桥系统气动特性的节段模型风洞试验研究[J]. 铁道学报, 2004, 26(3): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200403014.htmLI Yong-le, LIAO Hai-li, QIANG Shi-zhong. Study on aero-dynamic characteristics of the vehicle-bridge system by the section model wind tunnel test[J]. Journal of the China Rail-way Society, 2004, 26(3): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200403014.htm -