Influence of train tail exhaust device on longitudinal force of train
-
摘要: 根据气体流动理论与多刚体动力学原理, 建立了带有列尾装置的列车空气制动系统与列车纵向动力学联合仿真模型, 计算了制动系统中空气流动瞬态数值解, 获得制动系统特性, 同步计算了列车纵向冲动。2万吨组合列车计算结果表明:全制动时安装列尾装置使最大车钩力降低54%, 列车纵向冲动明显降低;列尾装置减压量越大, 车钩力降低越明显, 目前列尾装置减压量固定为50kPa, 应根据线路经常使用的减压量确定更合理的值;列尾装置排气速度对车钩力影响较小;列尾装置滞后时间对车钩力影响微小;使用机车替代列尾装置, 在大减压量制动时, 车钩力将明显得到改善, 减压量越小, 机车与列尾装置作用效果越接近, 当机车减压50kPa制动时, 列尾装置与机车作用相同。Abstract: Based on airflow theory and multi-rigid dynamics, a train combined simulation model of longitudinal dynamics and air brake system with train tail exhaust device was established, the transient numerical solution of airflow in the brake system was calculated, the performance of brake system was obtained, and train longitudinal dynamics was simulated synchronously. Simulation result shows that for 20 000 t train, tail exhaust device can reduce the maximum coupler force by 54% at full application brake, which is more obvious. The greater the pressure reduction of brake pipe is, the smaller the coupler force is. Now the fixed pressure reduction in tail exhaust device is 50 kPa, and it should be modified according to the common pressure reduction. The exhaust speed and lag time of tail exhaust device have little effect on train coupler force. When tail exhaust device is replaced with locomotive, the coupler force reduces under full service application, the greater the reduction of service application is, the greater the difference between locomotive and tail exhaust device is. When the reduction is 50 kPa, there is no difference between locomotive and tail exhaust device.
-
表 1 单编万吨列车制动性能对比
Table 1. Brake performance comparison of 10 000 t train in test and simulation
制动参数 常用减压50 kPa 常用减压100 kPa 全制动 试验 仿真 试验 仿真 试验 仿真 实际减压量/kPa 49.0 50.0 99.0 102.0 183.0 167.4 1车BC出闸时间/s 1.45 1.77 1.51 1.82 1.41 1.75 尾车BC出闸时间/s 8.31 9.06 8.32 8.90 7.96 8.95 减压时间/s 29.0 36.5 52.0 58.0 80.0 80.4 表 2 单编万吨列车运行结果对比
Table 2. Running result comparison of 10 000 t train in test and simulation
制动参数 常用制动(170 kPa) 试验 仿真 制动初速/ (km·h-1) 75.9 75.9 制动距离/m 1 118.0 1 138.8 制动时间/s 78.81 78.85 最大车钩力/kN -561 -560 表 3 两万吨列车制动结果对比
Table 3. Brake performance comparison of 20 000 t train in test and simulation
制动参数 常用制动(170 kPa) 紧急制动 试验 仿真 试验 仿真 1车BC出闸时间/s 1.63 1.76 0.36 0.44 从控1响应时间/s 2.35 2.35 2.22 2.22 157车BC出闸时间/s 6.22 6.50 5.39 5.47 210车BC出闸时间/s 2.59 2.65 2.28 2.24 表 4 两万吨列车运行结果对比
Table 4. Running result comparison of 20 000 t train in test and simulation
制动参数 常用制动(170 kPa) 紧急制动 试验 仿真 试验 仿真 制动初速/ (km·h-1) 79.6 79.6 78.1 78.1 制动距离/m 1 083.0 1 151.0 672.0 700.7 制动时间/s 72.4 78.8 51.7 53.1 最大车钩力/kN -1 631.0 -1 626.7 -1 930.0 -1 949.6 -
[1] GENG Zhi-xiu. System integration and innovation of operat-ing20kt combined heavy haul train on Datong-Qinhuangdao Line[J]. Engineering Sciences, 2008, 6 (3): 12-26. [2] COLE C, MCCLANACHAN M, SPIRYAGIN M, et al. Wagon instability in long train[J]. Vehicle System Dynamics, 2012, 50 (S1): 303-317. [3] CANTONE L, CRESCENTINI E, VERZICCO R, et al. A numerical model for the analysis of unsteady train braking and releasing manoeuvre[J]. Journal of Rail and Rapid Transit, 2009, 223 (3): 305-317. doi: 10.1243/09544097JRRT240 [4] CANTONE L. TrainDy: the new Union Internationale des Chemins de Fer software for freight train interoperability[J]. Journal of Rail and Rapid Transit, 2011, 225 (1): 57-70. doi: 10.1243/09544097JRRT347 [5] NAM S W, KIM H J. A study on the improvement of release application characteristics of pneumatic brakes for freight train[J]. KSME International Journal, 2002, 16 (6): 776-784. doi: 10.1007/BF02939337 [6] PIECHOWIAK T. Pneumatic train brake simulation method[J]. Vehicle System Dynamics, 2009, 47 (12): 1-20. [7] PIECHOWIAK T. Verification of pneumatic railway brake models[J]. Vehicle System Dynamics, 2010, 48 (3): 283-299. doi: 10.1080/00423110902780622 [8] 魏伟, 张善荣, 刘庆忠. 长大列车制动系统减压特性的计算机模拟[J]. 大连铁道学院学报, 1992, 13 (4): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD199204007.htmWEI Wei, ZHANG Shan-rong, LIU Qing-zhong. A study on characteristic of pressure reduction of air brake system in a long train[J]. Journal of Dalian Railway Institute, 1992, 13 (4): 43-49. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD199204007.htm [9] 魏伟, 张开文. 列车空气制动系统的数学模型[J]. 西南交通大学学报, 1994, 29 (3): 283-291. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT403.009.htmWEI Wei, ZHANG Kai-wen. A mathematical model of air brake system of trains[J]. Journal of Southwest Jiaotong University, 1994, 29 (3): 283-291. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT403.009.htm [10] 魏伟, 李文辉. 列车空气制动系统数值仿真[J]. 铁道学报, 2003, 25 (1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200301008.htmWEI Wei, LI Wen-hui. Simulation model of train brake sys-tem[J]. Journal of the China Railway Society, 2003, 25 (1): 38-42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200301008.htm [11] 魏伟. 列车空气制动系统仿真的有效性[J]. 中国铁道科学, 2006, 27 (5): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200605019.htmWEI Wei. The validity of the simulation for train air brake system[J]. China Railway Science, 2006, 27 (5): 104-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200605019.htm [12] 魏伟. 两万吨组合列车制动特性[J]. 交通运输工程学报, 2007, 7 (6): 12-16. http://transport.chd.edu.cn/article/id/200706003WEI Wei. Brake performances of20000ton connected train[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (6): 12-16. (in Chinese). http://transport.chd.edu.cn/article/id/200706003 [13] 魏伟, 赵旭宝, 姜岩, 等. 列车空气制动与纵向动力学集成仿真[J]. 铁道学报, 2012, 34 (4): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201204010.htmWEI Wei, ZHAO Xu-bao, JIANG Yan, et al. The integrated model of train brake and longitudinal dynamics[J]. Journal of the China Railway Society, 2012, 34 (4): 39-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201204010.htm [14] 魏伟, 武星宇. 制动特性对列车纵向冲动的影响[J]. 大连交通大学学报, 2012, 33 (1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201202001.htmWEI Wei, WU Xing-yu. Effect of brake characteristics on longitudinal impulse of train[J]. Journal of Dalian Jiaotong University, 2012, 33 (1): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201202001.htm [15] 赵新红. 大秦线可控列尾装置实时监测系统的研究[J]. 中国铁路, 2009 (6): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG200906023.htmZHAO Xin-hong. Research on real-time monitoring system for train tail exhaust device in Datong-Qinhuangdao Line[J]. Chinese Railways, 2009 (6): 76-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG200906023.htm [16] 林俊亭, 蒋文怡. 数据会议在多机车同步操控中的应用研究[J]. 兰州交通大学学报, 2008, 27 (6): 134-136. https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX200806038.htmLIN Jun-ting, JIANG Wen-yi. Application of data conference to multi-locomotive synchronized control[J]. Journal of Lanzhou Jiaotong University, 2008, 27 (6): 134-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LZTX200806038.htm -