Accumulator parameter matching of active suspension without external energy supply
-
摘要: 为了合理匹配LQG控制无外界动力源主动悬架的蓄能器充气压力、最高工作压力与容积等参数, 以满足95.4%工作需求, 选取理想控制力标准差的2倍为主动悬架的最大输出力, 结合馈能/主动油缸参数确定蓄能器的理想工作压力; 以压力波动小于5%为目标, 确定蓄能器的充气压力和最高工作压力; 推导了悬架与蓄能器间的能量流动方程, 并在增加2kW负载条件下进行变容积参数的动态仿真, 确定蓄能器的容积。计算结果表明: 蓄能器理想工作压力为23.008MPa时, 悬架二次型性能指标仅较理想状态增大5.21%;蓄能器的充气压力、最高工作压力与容积分别为11.108、23.583MPa与2.5L, 此时LQG控制无外界动力源主动悬架稳定工作时蓄能器的最大压力波动为1.03%。可见蓄能器参数匹配结果同时满足无外界动力源主动悬架的低成本、高性能及高能量回收率的要求。
-
关键词:
- 汽车工程 /
- 无外界动力源主动悬架 /
- 蓄能器 /
- 参数匹配 /
- 线性二次高斯问题
Abstract: In order to reasonably match the pre-charge pressure, maximum working pressure and volume of accumulator for active suspension without external energy supply based on LQG(linear quadratic Gaussian) control, twice standard deviation of ideal control force was proposed as the maximum force output of active suspension to meet 95.4% of work demand, and the parameters of reclaiming energy/active cylinder were taken into account to ascertain the ideal working pressure of accumulator. To make the pressure fluctuation in accumulator less than 5%, the pre-charge pressure and maximum working pressure of accumulator were matched. The energy flow equations between active suspension and accumulator were deduced. Under 2 kW load, the varying volume's dynamic simulation of accumulator was carried out. Computation result shows that the ideal working pressure of accumulator is 23.008 MPa, and the quadratic performance index of the suspension increases 5.21% compared with the ideal state. Accumulator's pre-charge pressure, maximum working pressure and volume are 11.108 MPa, 23.583 MPa and 2.5 L respectively, and the maximum pressure fluctuation in accumulator is 1.03% when the active suspension without external energy supply based on LQG control works steadily. So the demand with low manufacture cost, good suspension performance and high energy reclaiming efficiency for the active suspension is achieved. -
表 1 被动悬架与路面输入参数
Table 1. Parameters of passive suspension and road input
参数 参数值 参数 参数值 m1/kg 350 k1/(N·m-1) 3×106 m2/kg 5 000 k2/(N·m-1) 5.05×105 c/(N·s·m-1) 30 150 Gq(n0)/(m2·m) 256×10-6 f0/Hz 0.22 表 2 λ与Pχ的关系
Table 2. Relation ofλand Pχ
λ 1.00 2.00 2.58 3.00 3.29 Pχ/% 31.7 4.6 1.0 0.3 0.1 1-Pχ/% 68.3 95.4 99.0 99.7 99.9 表 3 三组悬架性能统计数据
Table 3. Performance data of three suspensions
性能参数 输出力受限主动悬架 理想主动悬架 λ=2.00 λ=2.58 σ(a2)/(m·s-2) 1.369 8 1.371 2 1.380 3 σ(x2-x1)/m 0.013 1 0.012 9 0.012 9 σ(x1-q)/m 0.004 6 0.004 5 0.004 4 J 4.659 5 4.485 0 4.428 6 P/kW -2.800 4 -2.788 0 -2.790 7 max(F)/N 18 504 23 870 28 245 表 4 容积与压力波动的关系
Table 4. Relation of pressure fluctuation and volume
蓄能器标准容积/L 负载下的最低压力/MPa p相对pi的最大变化率 0.63 20.46 -0.110 7 1.60 22.32 -0.029 9 2.50 22.77 -0.010 3 4.00 23.07 0.002 7 6.30 23.26 0.011 0 -
[1] ZAREH S H, SARRAFAN A, KHAYYAT A A A, et al. Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers[J]. Journal of Mechanical Science and Technology, 2012, 26(2): 323-334. doi: 10.1007/s12206-011-1007-6 [2] CREWS J H, MATTSON M G, BUCKNER G D. Multi-objective control optimization for semi-active vehicle suspen-sions[J]. Journal of Sound and Vibration, 2011, 330(23): 5502-5516. doi: 10.1016/j.jsv.2011.05.036 [3] MALEKSHAHI A, MIRZAEI M. Designing a non-linear tracking controller for vehicle active suspension systems using an optimization process[J]. International Journal of Automotive Technology, 2012, 13(2): 263-271. doi: 10.1007/s12239-012-0023-6 [4] YIM S. Design of a robust controller for rollover prevention with active suspension and differential braking[J]. Journal of Mechanical Science and Technology, 2012, 26(1): 213-222. doi: 10.1007/s12206-011-0915-9 [5] 刘树博, 赵丁选. 主动悬架H∞/广义H 2静态输出反馈控制方法[J]. 中国公路学报, 2009, 22(4): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200904021.htmLIU Shu-bo, ZHAO Ding-xuan. H∞/generalized H 2 static output feedback control method for active suspension[J]. China Journal of Highway and Transport, 2009, 22(4): 122-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200904021.htm [6] EBRAHIMI B, BOLANDHEMMAT H, KHAMESEE M B, et al. A hybrid electromagnetic shock absorber for activevehicle suspension systems[J]. Vehicle System Dynamics, 2011, 49(1/2): 311-332. [7] RYN S, KIM Y, PARK Y. Robust H∞preview control of an active suspension system with norm-bounded uncertainties[J]. International Journal of Automotive Technology, 2008, 9(5): 585-592. doi: 10.1007/s12239-008-0069-7 [8] 于长淼, 王伟华, 王庆年. 馈能悬架阻尼特性及其影响因素[J]. 吉林大学学报: 工学版, 2010, 40(6): 1482-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201006005.htmYU Chang-miao, WANG Wei-hua, WANG Qing-nian. Damping characteristic and its influence factors in energy regenerative suspension[J]. Journal of Jilin University: Engineering and Technology Edition, 2010, 40(6): 1482-1486. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201006005.htm [9] HUANG K, YU F, ZHANG Y. Active controller design for an electromagnetic energy-regenerative suspension[J]. International Journal of Automotive Technology, 2011, 12(6): 877-885. doi: 10.1007/s12239-011-0100-2 [10] 陈士安, 何仁, 陆森林. 新型馈能型悬架及其工作原理[J]. 机械工程学报, 2007, 43(11): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200711030.htmCHEN Shi-an, HE Ren, LU Sen-lin. New reclaiming energy suspension and its working principle[J]. Chinese Journal of Mechanical Engineering, 2007, 43(11): 177-182. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200711030.htm [11] 陈士安, 王勇刚, 王东, 等. 无外界动力源主动悬架能量可用性[J]. 交通运输工程学报, 2012, 12(2): 46-52. doi: 10.3969/j.issn.1671-1637.2012.02.008CHEN Shi-an, WANG Yong-gang, WANG Dong, et al. Energy availability of active suspension without external energy supply[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 46-52. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.02.008 [12] 陈士安, 邱峰, 何仁, 等. 一种确定车辆悬架LQG控制加权系数的方法[J]. 振动与冲击, 2008, 27(2): 65-68, 176. doi: 10.3969/j.issn.1000-3835.2008.02.014CHEN Shi-an, QIU Feng, HE Ren, et al. A method for choosing weights in a suspension LQG control[J]. Journal of Vibration and Shock, 2008, 27(2): 65-68, 176. (in Chinese). doi: 10.3969/j.issn.1000-3835.2008.02.014 [13] CHEN Ping-lu, YU Xiao-li, LIU Lin. Simulation and experi-mental study of electro-pneumatic valve used in air-powered engine[J]. Journal of Zhejiang University: Science A, 2009, 10(3): 377-383. -