Slot switching model of airlines under cooperative game
-
摘要: 针对航班波运行方式下的地面等待问题, 提出了时隙交换策略。以参与交换各方的最小旅客延误为目标函数, 以Pareto改进解为约束条件, 运用合作博弈理论建立了2个航空公司间的时隙交换模型。将时隙交换模型分解成时隙指派模型与时隙组合模型, 使用时隙指派模型求给定时隙状况下的最优指派方案与目标函数值, 使用时隙组合模型求2个航空公司的最优时隙分配方案。计算结果表明: 在无时隙交换下, 航空公司1的旅客总延误为238 955min, 航空公司2的旅客总延误为145 170min; 当2个航空公司相互交换6个时隙后, 航空公司1的旅客总延误为232 945min, 航空公司2的旅客总延误为142 130min, 分别下降2.5%与2.1%;当航班信息完全时, 时隙交换能够使航空公司获得最优Pareto改进解; 当航班信息不完全时, 航空公司可以通过讨价还价的方法获得较好的时隙交换方案。Abstract: Aiming at the ground holding problem under the operation mode of flight bank, slot switching strategy was proposed. The minimum passenger delays of all airlines involved in slot switching were taken as objective functions, the Pareto improved solution was taken as constraint condition, and the slot switching model between two airlines was established by using cooperative game theory. The model was decomposed into slot assignment model and slot combination model. By using slot assignment model, the optimal assignment scheme and objective function value under determined slot condition were obtained. By using slot combination model, the optimal slot allocation schemes of two airlines were obtained. Computation result shows that without slot switching, the total passenger delays of airlines 1 and 2 are 238 955, 145 170 min respectively. After switching six slots between two airlines, the total passenger delays of airlines 1 and 2 are 232 945, 142 130 min respectively, and reduce by 2.5% and 2.1% respectively. When flight information is complete, slot switching can make airlines get optimal Pareto improved solutions. When flight information is imcomplete, airlines can obtain better slot switching schemes by using bargaining method.
-
表 1 航空公司1的航班计划
Table 1. Flight planning of airline 1
表 2 航空公司2航班计划
Table 2. Flight planning of airline 2
表 3 航空公司1时隙变更方案
Table 3. Slot alteration scheme of airline 1
表 4 航空公司2时隙变更方案
Table 4. Slot alteration scheme of airline 2
表 5 中转旅客人数
Table 5. Transfer passenger numbers
表 6 航空公司1在无时隙交换下的时隙指派方案
Table 6. Slot assignment scheme of airline 1without slot switching
表 7 航空公司2在无时隙交换下的时隙指派方案
Table 7. Slot assignment scheme of airline 2without slot switching
表 8 航空公司1在时隙交换下的时隙指派方案
Table 8. Slot assignment scheme of airline 1with slot switching
表 9 航空公司2在时隙交换下的时隙指派方案
Table 9. Slot assignment scheme of airline 2with slot switching
-
[1] ANDREATTA G, BRUNETTA L, GUASTALLA G. From ground holding to free flight: an exact approach[J]. Trans-portation Science, 2000, 34(4): 394-401. doi: 10.1287/trsc.34.4.394.12318 [2] SHERALI H D, STAATS R W, TRANI A A. An airspace planning and collaborative decision-making model: part I—probabilistic conflicts, workload, and equity considerations[J]. Transportation Science, 2003, 37(4): 434-456. doi: 10.1287/trsc.37.4.434.23272 [3] RICHETTA O, ODONI A R. Solving optimally the static ground-holding policy problem in air traffic control[J]. Transportation Science, 1993, 27(3): 228-238. doi: 10.1287/trsc.27.3.228 [4] VRANAS P B M, BERTSIMAS D, ODONI A R. Dynamic ground-holding policies for a network of airports[J]. Trans-portation Science, 1994, 28(4): 275-291. doi: 10.1287/trsc.28.4.275 [5] CHANG K, HOWARD K, OIESEN R, et al. Enhancements to the FAA ground-delay program under collaborative decision making[J]. Interfaces, 2001, 31(1): 57-76. doi: 10.1287/inte.31.1.57.9689 [6] 胡明华, 钱爱东, 苏兰根. 基于地面等待策略的航班时刻规划方法[J]. 航空学报, 2001, 23(3): 262-264. doi: 10.3321/j.issn:1000-6893.2001.03.009HU Ming-hua, QIAN Ai-dong, SU Lan-gen. Airlines timetable programming method based on ground holding strategy[J]. Acta Aeronautica et Astronautica Sinica, 2001, 23(3): 262-264. (in Chinese). doi: 10.3321/j.issn:1000-6893.2001.03.009 [7] VOSSEN T, BALL M, HOFFMAN R, et al. A general approach to equity in traffic flow management and its applicationto mitigating exemption bias in ground delay programs[J]. Air Traffic Control Quarterly, 2004, 11(4): 277-292. [8] 周茜, 张学军, 柳重堪. 时隙分配算法在CDM GDP程序中的应用[J]. 北京航空航天大学学报, 2006, 32(9): 1043-1045. doi: 10.3969/j.issn.1001-5965.2006.09.011ZHOU Qian, ZHANG Xue-jun, LIU Zhong-kan. Slots allocation in CDM GDP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(9): 1043-1045. (in Chinese). doi: 10.3969/j.issn.1001-5965.2006.09.011 [9] 张洪海, 胡明华. CDM GDP飞机着陆时隙多目标优化分配[J]. 系统管理学报, 2009, 18(3): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL200903009.htmZHANG Hong-hai, HU Ming-hua. Multi-objection optimiza-tion allocation of aircraft landing slot in CDM GDP[J]. Journal of Systems and Management, 2009, 18(3): 302-308. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL200903009.htm [10] KLEIT A N, KOBAYASHI B H. Market failure or market efficiency?evidence on airport slot usage[J]. Research in Transportation Economics, 1996, 4(1): 1-32. [11] VAHQUEZ-MARQUEZ A. American airlines arrival slot allocation system(ASAS)[J]. Interfaces, 1991, 21(1): 42-61. doi: 10.1287/inte.21.1.42 [12] STARKIE D. Allocating airport slots: a role for the market?[J]. Journal of Air Transport Management, 1998, 4(2): 111-116. doi: 10.1016/S0969-6997(98)00006-4 [13] VERHOEF E T. Congestion pricing, slot sales and slot trading in aviation[J]. Transportation Research Part B: Methodological, 2010, 44(3): 320-329. doi: 10.1016/j.trb.2009.07.002 [14] ZHANG Ai-ming, ZHANG Yi-min. Airport capacity and congestion when carriers have marketpower[J]. Journal of Urban Economics, 2006, 60(2): 229-247. doi: 10.1016/j.jue.2006.02.003 [15] VOSSEN T, BALL M. Slot trading opportunities in collabora-tive ground delay programs[J]. Transportation Science, 2006, 40(1): 29-43. doi: 10.1287/trsc.1050.0121 [16] 高强, 严俊, 朱金福. 协同决策机制下航空公司时隙分配优化决策[J]. 交通信息与安全, 2012, 30(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201201009.htmGAO Qiang, YAN Jun, ZHU Jin-fu. Airlines'optimization model of slot allocation through collaborative decision-making mechanism[J]. Journal of Transportation Information and Safety, 2012, 30(1): 24-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201201009.htm [17] 陈端兵, 黄文奇. 一种求解集合覆盖问题的启发式算法[J]. 计算机科学, 2007, 34(4): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA200704036.htmCHEN Duan-bing, HUANG Wen-qi. A heuristic algorithm for set covering problem[J]. Computer Science, 2007, 34(4): 133-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA200704036.htm [18] VOSSEN T, BALL M. Optimization and mediated bartering models for ground delay programs[J]. Naval Research Logistics, 2005, 53(1): 75-90. [19] 王飞, 徐肖豪, 张静, 等. GHP时隙分配问题的组合拍卖竞胜标模型与算法[J]. 系统工程, 2010, 28(2): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201002006.htmWANG Fei, XU Xiao-hao, ZHANG Jing, et al. Combinatorial auction winner determination model and algorithm in GHP slot allocation problem[J]. Systems Engineering, 2010, 28(2): 30-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201002006.htm -