留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AIS数据的受限水域船舶领域计算方法

向哲 胡勤友 施朝健 杨春

向哲, 胡勤友, 施朝健, 杨春. 基于AIS数据的受限水域船舶领域计算方法[J]. 交通运输工程学报, 2015, 15(5): 110-117. doi: 10.19818/j.cnki.1671-1637.2015.05.014
引用本文: 向哲, 胡勤友, 施朝健, 杨春. 基于AIS数据的受限水域船舶领域计算方法[J]. 交通运输工程学报, 2015, 15(5): 110-117. doi: 10.19818/j.cnki.1671-1637.2015.05.014
XIANG Zhe, HU Qin-you, SHI Chao-jian, YANG Chun. Computation method of ship domains in restricted waters based on AIS data[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 110-117. doi: 10.19818/j.cnki.1671-1637.2015.05.014
Citation: XIANG Zhe, HU Qin-you, SHI Chao-jian, YANG Chun. Computation method of ship domains in restricted waters based on AIS data[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 110-117. doi: 10.19818/j.cnki.1671-1637.2015.05.014

基于AIS数据的受限水域船舶领域计算方法

doi: 10.19818/j.cnki.1671-1637.2015.05.014
基金项目: 

上海市人才发展资金项目 201436

详细信息
    作者简介:

    向哲(1984-), 男, 广西桂林人, 上海海事大学工学博士研究生, 从事AIS数据挖掘研究

    施朝健(1957-), 男, 福建南屏人, 上海海事大学教授, 工学博士

  • 中图分类号: U675.7

Computation method of ship domains in restricted waters based on AIS data

More Information
Article Text (Baidu Translation)
  • 摘要: 为获取受限水域船舶领域, 提出一种利用海量AIS数据建立模型的方法。选取目标船舶的AIS数据, 将其附近水域网格化, 考虑了船舶尺寸, 计算了他船船体出现在每一个网格中的频数, 提取单船网格频数图, 将同一类型的目标船舶网格频数图叠加, 形成了特定类型船舶的网格频数图。将网格频数图按频数填充颜色, 可清晰地显示船舶领域的形状, 利用断面分析测量船舶领域长度。选用上海港南槽水域的AIS数据对方法进行验证, 统计了60~79、80~99、100~119、120~139、140~159m共5类不同长度船舶的船舶领域。分析结果表明: 由于考虑了船舶尺寸, 5类船舶的领域在长轴方向较船首向存在向左舷偏转的夹角, 角度分别为3.37°、9.46°、17.53°、10.78°、8.13°; 船舶领域长度与船舶长度的比值依次递减, 比值分别为6.00、5.80、5.67、5.43、5.13。可见受限水域内船舶领域形状为不规则椭圆, 且船舶领域长度与船舶长度的比值并非为定值。

     

  • 图  1  算法流程

    Figure  1.  Algorithm flow

    图  2  单船网格计算原理

    Figure  2.  Calculation principle of single ship grid

    图  3  舷角换算原理

    Figure  3.  Conversion principle of chord angle

    图  4  单船网格图叠加效果

    Figure  4.  Overlying effect of single ship grid graphs

    图  5  60~79m船舶的领域

    Figure  5.  Domain of ship with length of 60-79m

    图  6  80~99m船舶的领域

    Figure  6.  Domain of ship with length of 80-99m

    图  7  100~119m船舶的领域

    Figure  7.  Domain of ship with length of 100-119m

    图  8  120~139m船舶的领域

    Figure  8.  Domain of ship with length of 120-139m

    图  9  140~159m船舶的领域

    Figure  9.  Domain of ship with length of 140-159m

    图  10  三维船舶领域及其断面

    Figure  10.  3Dship domain and its section

    图  11  60~79m船舶领域断面

    Figure  11.  Domain section of ship with length of 60-79m

    图  12  80~99m船舶领域断面

    Figure  12.  Domain section of ship with length of 80-99m

    图  13  100~119m船舶领域断面

    Figure  13.  Domain section of ship with length of 100-119m

    图  14  120~139m船舶领域断面

    Figure  14.  Domain section of ship with length of 120-139m

    图  15  140~159m船舶领域断面

    Figure  15.  Domain section of ship with length of 140-159m

    图  16  船舶领域长度与船舶长度的比值

    Figure  16.  Length ratios of ship domain to ship

    表  1  船舶领域长轴与船舶首向夹角

    Table  1.   Angles between long axises of shipdomains and ship headings

  • [1] FUJⅡ Y, TANAKA K. Traffic capacity[J]. Journal of Navigation, 1971, 24(4): 543-552. doi: 10.1017/S0373463300022384
    [2] GOODWIN E M. A statistical study of ship domains[J]. Journal of Navigation, 1975, 28(3): 328-344. doi: 10.1017/S0373463300041230
    [3] DAVIS P V, DOVE M J, STOCKEL C T. A computer simulation of marine traffic using domains and arenas[J]. Journal of Navigation, 1980, 33(2): 215-222. doi: 10.1017/S0373463300035220
    [4] DAVIS P V, DOVE M J, STOCKEL C T. A computer simulation of multi-ship encounters[J]. Journal of Navigation, 1982, 35(2): 347-352. doi: 10.1017/S0373463300022177
    [5] PIETRZYKOWSKI Z. Ship's fuzzy domain―a criterion for navigational safety in narrow fairways[J]. Journal of Navigation, 2008, 61(3): 499-514. doi: 10.1017/S0373463308004682
    [6] PIETRZYKOWSKI Z, URIASZ J. The ship domain―a criterion of navigational safety assessment in an open sea area[J]. Journal of Navigation, 2009, 62(1): 93-108. doi: 10.1017/S0373463308005018
    [7] S'MIERZCHALSKI R, MICHALEWICZ Z. Modeling of ship trajectory in collision situations by an evolutionary algorithm[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 227-241. doi: 10.1109/4235.873234
    [8] S'MIERZCHALSKI R, MICHALEWICZ Z. Adaptive modeling of a ship trajectory in collision situations at sea[C]∥IEEE. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation. New York: IEEE, 1998: 342-347.
    [9] 贾传荧. 拥挤水域内船舶领域的探讨[J]. 大连海事大学学报, 1989, 15(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS198904002.htm

    JIA Chuan-ying. Ship domain in congested water area[J]. Journal of Dalian Maritime University, 1989, 15(4): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS198904002.htm
    [10] 陈厚忠, 郭国平. 内河并列桥梁桥区水域船舶领域模型与通过能力研究[J]. 船海工程, 2008, 37(5): 113-116. doi: 10.3963/j.issn.1671-7953.2008.05.032

    CHEN Hou-zhong, GUO Guo-ping. Research of ship domain and the traffic capacity in paratactic bridge water area[J]. Ship and Ocean Engineering, 2008, 37(5): 113-116. (in Chinese) doi: 10.3963/j.issn.1671-7953.2008.05.032
    [11] 刘绍满, 王宁, 吴兆麟. 船舶领域研究综述[J]. 大连海事大学学报, 2011, 37(1): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201101014.htm

    LIU Shao-man, WANG Ning, WU Zhao-lin. Review of research on ship domain[J]. Journal of Dalian Maritime University, 2011, 37(1): 51-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201101014.htm
    [12] WANG Ning. An intelligent spatial collision risk based on the quaternion ship domain[J]. Journal of Navigation, 2010, 63(4): 733-749. doi: 10.1017/S0373463310000202
    [13] ZHU Xiao-lin, XU Han-zhen, LIN Jun-qing. Domain and its model based on neural networks[J]. Journal of Navigation, 2001, 54(1): 97-103. doi: 10.1017/S0373463300001247
    [14] HANSEN M G, JENSEN T K, LEHN-SCHIØLER T, et al. Empirical ship domain based on AIS data[J]. Journal of Navigation, 2013, 66(6): 931-940. doi: 10.1017/S0373463313000489
    [15] SZLAPCZYNSKI R. A unified measure of collision risk derived from the concept of a ship domain[J]. Journal of Navigation, 2006, 59(3): 477-490. doi: 10.1017/S0373463306003833
    [16] WANG Ning, MENG Xian-yao, XU Qing-yang, et al. A unified analytical framework for ship domains[J]. Journal of Navigation, 2009, 62(4): 643-655. doi: 10.1017/S0373463309990178
    [17] WANG Ning. A novel analytical framework for dynamic quaternion ship domains[J]. Journal of Navigation, 2013, 66(2): 265-281. doi: 10.1017/S0373463312000483
    [18] LIU Shao-man, WANG Ning, SHAO Zhu-rong, et al. A novel dynamic quaternion ship domain[C]∥IEEE. The Fifth International Conference on Intelligent Control and Information Processing. New York: IEEE, 2014: 175-180.
    [19] CHANG S J, HSIAO D T, WANG W C. AIS-based delineation and interpretation of ship domain models[C]∥IEEE. OCEANS 2014. New York: IEEE, 2014: 1-6.
    [20] 初秀民, 刘潼, 马枫, 等. 山区航道AIS信号场强分布特性[J]. 交通运输工程学报, 2014, 14(6): 117-126. doi: 10.3969/j.issn.1671-1637.2014.06.015

    CHU Xiu-min, LIU Tong, MA Feng, et al. Distribution characteristic of AIS signal field intensity along mountainous waterway[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 117-126. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.06.015
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  909
  • HTML全文浏览量:  200
  • PDF下载量:  723
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-27
  • 刊出日期:  2015-10-25

目录

    /

    返回文章
    返回