Comparison of wind-vehicle-bridge coupling vibration characteristics for three-line three-tower suspension bridge
-
摘要: 以某三线合一、三塔悬索桥的2种设计方案(钢箱桁和钢桁方案)为工程背景, 通过车桥系统节段模型风洞试验, 测试了车辆和桥梁的三分力系数, 并基于风-车-桥系统空间耦合动力学模型, 采用自主研发的桥梁分析软件BANSYS, 对比分析了该桥的结构动力特性与风-车-桥耦合振动性能。分析结果表明: 三线合一、三塔悬索桥结构自振频率较低; 车辆气动力受轨道位置的影响较大, 钢桁方案迎风侧车辆阻力系数约为钢箱桁方案的2.2倍; 当风速为0时, 桥梁、车辆的动力响应总体上是随车速的增大而增大, 在同一车速下, 钢桁方案的桥梁位移较钢箱桁方案大, 主要是由于钢桁方案的桥梁整体刚度略弱于钢箱桁方案; 当考虑风速影响时, 桥梁的横向响应随风速的增大而显著增大; 车辆位于迎风侧, 风速为25m·s-1时, 钢箱桁方案和钢桁方案的桥梁横向位移约分别为风速为15m·s-1时的位移的2.4倍和3.8倍, 横风对桥梁的横向响应起主导作用; 同一风速时钢桁方案的桥梁响应总体上较钢箱桁方案大; 同一方案时车辆响应随风速的增大而增大, 当风速达到25m·s-1时, 车辆动力响应显著增加, 相比15m·s-1时最大增加幅度为71.6%。Abstract: Taking the two design schemes(steel-box-truss and steel-truss schemes)of a three-line three-tower suspension bridge as the research object, the three-component coefficients of forces for vehicle and bridge were obtained by the wind tunnel tests of vehicle-bridge system section model.Based on the spatial dynamics model of wind-vehicle-bridge(WVB)system, the dynamic characteristics of bridge and the coupling vibration characteristics of WVB system were analyzed by using the self-developed software BANSYS. Analysis result indicates that the natural frequencies of three-line three-tower suspension bridge are comparatively low.The aerodynamic characteristics of vehicle were greatly affected by track position, and the drag coefficient of windward vehicle for the steel-truss scheme is about 2.2 times that for the steel-box-truss scheme.When wind speed is 0, the dynamic responses of bridge and vehicle increase with the increase of vehicle speed.The displacements of bridge for the steel-truss scheme are bigger than those for the steel-box-truss scheme at the same vehicle speed, which is resulted from the weaker whole stiffness for the steel-truss scheme.When wind speed is considered, the lateral responsesof bridge greatly increase with wind speed increasing.When vehicle is running on the windward side and wind speed increases from 15m·s-1 to 25m·s-1, the lateral displacements of bridge for the steel-box-truss and steel-truss schemes enlarge to approximate 2.4 times and 3.8 times respectively, and crosswind is dominant to the lateral responses of bridge.On the whole, the bridge responses for the steel-truss scheme are larger than those for the steel-box-truss scheme under the same wind speed.As for the same scheme, vehicle responses increase with wind speed increasing.When wind speed reaches 25 m·s-1, the dynamic responses remarkably increase, and the maximum response index increases by 71.6% compared with that at the wind speed of 15m·s-1.
-
表 1 桥梁自振频率与振型描述
Table 1. Natural frequencies and vibration mode descriptions of bridge
表 2 车辆三分力系数
Table 2. Three-component coefficients of vehicle
表 3 不同车速下的桥梁响应
Table 3. Bridge responses at different vehicle speeds
表 4 不同风速下的桥梁响应
Table 4. Bridge responses at different wind speeds
-
[1] YOSHIDA O, OKUDA M, MORIYA T. Structural characteristics and applicability of four-span suspension bridge[J]. Journal of Bridge Engineering, 2004, 9(5): 453-463. doi: 10.1061/(ASCE)1084-0702(2004)9:5(453) [2] 肖汝诚, 姜洋, 项海帆. 缆索承重桥的体系比选[J]. 同济大学学报: 自然科学版, 2013, 41(2): 179-185, 207. doi: 10.3969/j.issn.0253-374x.2013.02.004XIAO Ru-cheng, JIANG Yang, XIANG Hai-fan. Comparison between structural systems of cable supported bridges[J]. Journal of Tongji University: Natural Science, 2013, 41(2): 179-185, 207. (in Chinese). doi: 10.3969/j.issn.0253-374x.2013.02.004 [3] NAZIR C P. Multispan balanced suspension bridge[J]. Journal of Structural Engineering, 1986, 112(11): 2512-2527. doi: 10.1061/(ASCE)0733-9445(1986)112:11(2512) [4] WANG Hao, TAO Tian-you, ZHOU Rui, et al. Parameter sensitivity study on flutter stability of a long-span tripletower suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 128: 12-21. doi: 10.1016/j.jweia.2014.03.004 [5] 万田保, 王忠彬. 泰州长江公路大桥三塔两跨悬索桥总体稳定性分析[J]. 桥梁建设, 2008(2): 17-19, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200802006.htmWAN Tian-bao, WANG Zhong-bin. Analysis of global stability of three-tower and two-span suspension bridge of Taizhou Changjiang River Highway Bridge[J]. Bridge Construction, 2008(2): 17-19, 26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200802006.htm [6] 张文明, 葛耀君. 三塔双主跨悬索桥动力特性精细化分析[J]. 中国公路学报, 2014, 27(2): 70-76. doi: 10.3969/j.issn.1001-7372.2014.02.009ZHANG Wen-ming, GE Yao-jun. Refinement analysis of dynamic characteristics of suspension bridge with triple towers and double main spans[J]. China Journal of Highway and Transport, 2014, 27(2): 70-76. (in Chinese). doi: 10.3969/j.issn.1001-7372.2014.02.009 [7] 梁鹏, 吴向男, 李万恒, 等. 三塔悬索桥静动力特性与中塔选型[J]. 交通运输工程学报, 2011, 11(4): 29-35. http://transport.chd.edu.cn/article/id/201104005LIANG Peng, WU Xiang-nan, LI Wan-heng, et al. Static and dynamic properties of three-tower suspension bridge and structural type selection of mid-tower[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 29-35. (in Chinese). http://transport.chd.edu.cn/article/id/201104005 [8] 李加武, 王新, 张悦, 等. 桥梁风致振动的混沌特性[J]. 交通运输工程学报, 2014, 14(3): 34-42. doi: 10.3969/j.issn.1671-1637.2014.03.009LI Jia-wu, WANG Xin, ZHANG Yue, et al. Chaos characteristics of wind-induced vibrations for bridge[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 34-42. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.03.009 [9] LIU M F, CHANG T P, ZENG D Y. The interactive vibration behavior in a suspension bridge system under moving vehicle loads and vertical seismic excitations[J]. Applied Mathematical Modelling, 2011, 35(1): 398-411. doi: 10.1016/j.apm.2010.07.005 [10] XU Y L, XIA H, YAN Q S. Dynamic response of suspension bridge to high wind and running train[J]. Journal of Bridge Engineering, 2003, 8(1): 46-55. doi: 10.1061/(ASCE)1084-0702(2003)8:1(46) [11] CHEN Z W, XU Y L, LI Q, et al. Dynamic stress analysis of long suspension bridges under wind, railway, and highway loadings[J]. Journal of Bridge Engineering, 2011, 16(3): 383-391. doi: 10.1061/(ASCE)BE.1943-5592.0000216 [12] DIANA G, FIAMMENGHI G. The Messina Strait Bridge: major problems affecting the design[C]∥STEFFEN A. 34th International Symposium on Bridge and Structural Engineering: Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas. Zurich: International Association for Bridge and Structural Engineering, 2010: 1-24. [13] ANDERSEN P K, ANDERSEN J E, BORDONARA G, et al. Runability analysis for the planned Messina Strait Bridge[C]∥ROECK G D, DEGRANDE G, LOMBAERT G, et al. Proceedings of the 8th International Conference on Structural Dynamics. München: European Association of Structural Dynamics, 2011: 1503-1509. [14] KWON S D, LEE J S, MOON J W, et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind[J]. Engineering Structures, 2008, 30(12): 3445-3456. doi: 10.1016/j.engstruct.2008.05.003 [15] 刘清江. 公轨两用悬索桥风-车-桥耦合振动研究[J]. 武汉理工大学学报, 2014, 36(3): 107-113.LIU Qing-jiang. Coupled vibration research of wind-vehiclebridge of light rail-cum-road suspension bridges[J]. Journal of Wuhan University of Technology, 2014, 36(3): 107-113. (in Chinese). [16] 李永乐, 董世赋, 臧瑜, 等. 大跨度公轨两用悬索桥风-车-桥耦合振动及抗风行车准则研究[J]. 工程力学, 2012, 29(12): 114-120.LI Yong-le, DONG Shi-fu, ZANG Yu, et al. Coupling vibration of wind-vehicle-bridge system for long-span road-rail suspension bridge and resistant-wind criterion of running train[J]. Engineering Mechanics, 2012, 29(12): 114-120. (in Chinese). [17] LI Yong-le, XIANG Huo-yue, WANG Bin, et al. Dynamic analysis of wind-vehicle-bridge coupling system during the meeting of two trains[J]. Advances in Structural Engineering, 2013, 16(10): 1663-1670. doi: 10.1260/1369-4332.16.10.1663 [18] 张敏, 张楠, 夏禾. 大跨度铁路悬索桥风-车-桥耦合动力分析[J]. 中国铁道科学, 2013, 34(4): 14-21.ZHANG Min, ZHANG Nan, XIA He. Analysis on windvehicle-bridge dynamic interaction for long-span railway suspension bridge[J]. China Railway Science, 2013, 34(4): 14-21. (in Chinese). [19] LI Yong-le, QIANG Shi-zhong, LIAO Hai-li, et al. Dynamics of wind-rail vehicle-bridge systems[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(6): 483-507. doi: 10.1016/j.jweia.2005.04.001 [20] 孟莎, 高芒芒. 武汉天兴洲公铁两用长江大桥动力计算分析[J]. 桥梁建设, 2008(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200801000.htmMENG Sha, GAO Mang-mang. Analysis of dynamic force calculation of Wuhan Tianxingzhou Changjiang Rail-Cum-Road Bridge[J]. Bridge Construction, 2008(1): 1-3. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200801000.htm [21] 李永乐, 朱佳琪, 赵凯, 等. 上海长江大桥风-轨道车辆-桥耦合振动及抗风行车准则研究[J]. 土木工程学报, 2012, 45(9): 108-114.LI Yong-le, ZHU Jia-qi, ZHAO Kai, et al. Coupled vibration of wind-rail vehicle-bridge system for Shanghai Yangtze River Bridge and the wind-resistant criterion of running trains[J]. China Civil Engineering Journal, 2012, 45(9): 108-114. (in Chinese). [22] 李永乐, 廖海黎, 强士中. 车桥系统气动特性的节段模型风洞试验研究[J]. 铁道学报, 2004, 26(3): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200403014.htmLI Yong-le, LIAO Hai-li, QIANG Shi-zhong. Study on aerodynamic characteristics of the vehicle-bridge system by the section model wind tunnel test[J]. Journal of the China Railway Society, 2004, 26(3): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200403014.htm -