Real vehicle test and numerical simulation of flow field in high-speed train bogie cabin
Article Text (Baidu Translation)
-
摘要: 设计了一种高速列车转向架舱内流场状态测试装置。在无横风、横风速度为15m·s-1与端板角度分别为30°、45°、70°条件下对转向架舱内流场进行了数值模拟, 并分析了裙板包覆对转向架舱内积雪形成的影响。试验结果表明: 转向架舱内气流流动规律的实测结果与模拟结果相同, 说明数值模拟可行; 动气流由列车底部以及两侧裙板灌入转向架舱内, 流经端板时产生流动分离现象, 大部分气流由端板底部及两侧裙板后部排出; 自头车往后, 流经转向架舱内的气流速度逐渐减小, 裙板处进气区域减小, 裙板后部排气区域增大; 雪粒大多由流经转向架舱底部的气流带入, 然后在转向架流场影响下不断沉积而产生积雪; 合理设置转向架舱端板角度可以减小冰雪在转向架舱内堆积的概率; 包覆裙板并不能有效减少转向架舱内积雪, 不建议采用。Abstract: The device for testing the flow field state in bogie cabin of high-speed train was designed. The flow field in bogie cabin was analyzed by numerical simulation method, under the conditions of no crosswind, crosswind speed of 15 m·s-1 and end plate angles of 30°, 45°and70°. The effect of skirt plate covering on accumulated snow formation was analyzed. Test result shows that the test and simulation results of airflow motion laws are coincident, so the simulation is feasible. Airflow enters into bogie cabin from train bottom and skirt plates of two sides. The flow separation phenomenon happens when airflow flows past end plate. Most airflow comes out from end plate bottom and skirt plate backs of two sides. The speed of airflow past bogie cabin decreases gradually from head car to back car, air inlet area at skirt plate decreases, and air outlet area at skirt plate back increases. Snow grains are taken into bogie cabin by airflow past the cabin bottom and deposit continuously under the effect of flow field of bogie to form accumulated snow. Reasonably setting end plate angle of bogie can decrease the accumulating probability of snow in bogie cabin. Covering skirt plate can not decrease accumulated snow in bogie cabin, and is not recommended.
-
Key words:
- high-speed train /
- bogie cabin /
- flow field /
- real vehicle test /
- numerical simulation
-
表 1 计算结果
Table 1. Calculation result
-
[1] 周晅毅, 顾明, 朱忠义, 等. 首都国际机场3号航站楼屋面雪载荷分布研究[J]. 同济大学学报: 自然科学版, 2007, 35(9): 1193-1196. doi: 10.3321/j.issn:0253-374X.2007.09.008ZHOU Xuan-yi, GU Ming, ZHU Zhong-yi, et al. Study on snow loads on roof of Terminal 3of Beijing Capital International Airport[J]. Journal of Tongji University: Natural Science, 2007, 35(9): 1193-1196. (in Chinese). doi: 10.3321/j.issn:0253-374X.2007.09.008 [2] 李雪峰, 周晅毅, 顾明. 北京南站屋面雪载荷分布研究[J]. 建筑结构, 2008, 38(5): 109-112.LI Xue-feng, ZHOU Xuan-yi, GU Ming. Study on snow loads on the roof of Beijing South Station[J]. Building Structure, 2008, 38(5): 109-112. (in Chinese). [3] 李俊民, 单永林, 林鹏. 高速动车组转向架防冰雪导流罩的空气动力学性能分析[J]. 计算机辅助工程, 2013, 22(2): 20-26, 80. doi: 10.3969/j.issn.1006-0871.2013.02.005LI Jun-min, SHAN Yong-lin, LIN Peng. Analysis on aerodynamic performance of anti-ice/snow dome of high speed motor train unit bogie[J]. Computer Aided Engineering, 2013, 22(2): 20-26, 80. (in Chinese). doi: 10.3969/j.issn.1006-0871.2013.02.005 [4] SHISHIDO M, NAKADE K, IDO A, et al. Development of deflector to decrease snow-accretion to truck of a vehicle[J]. Rtri Report, 2009, 23(3): 29-34. [5] 张骥. 日本铁路防冰雪灾害举措[J]. 中国铁路, 2009(1): 64-68. doi: 10.3969/j.issn.1001-683X.2009.01.015ZHANG Ji. Measures of preventing ice and snow for Japanese railways[J]. Chinese Railways, 2009(1): 64-68. (in Chinese). doi: 10.3969/j.issn.1001-683X.2009.01.015 [6] 程永陆. Euro 4000型机车防寒改造[J]. 国外内燃机车, 2011(2): 1, 6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201102002.htmCHENG Yong-lu. Cold proof remake for Euro 4000locomotive[J]. Foreign Diesel Locomotive, 2011(2): 1, 6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201102002.htm [7] KLOOW L. High-speed train operation in winter climate[R]. Stockholm: KTH Railway Group, 2011. [8] ANDERSSON E. Concept proposal for a Scandinavian highspeed train[R]. Stockholm: KTH Railway Group, 2012. [9] POURREZA S. TBA 4530specialization project[R]. Trondheim: Norwegian University of Science and Technology, 2010. [10] PARADOT N, ALLAIN E, CROUÉR, et al. Development of a numerical modelling of snow accumulation on a high speed train[C]∥POMBO J. Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance. Stirling: Civil-Comp Press, 2014: 1-17. [11] UIC. Winter and railways study: rail system forum sector rolling stock sector infrastructure[R]. Paris: UIC, 2010. [12] 姚远. 高速列车典型区域非定常气动特性研究[D]. 北京: 中国科学院大学, 2013.YAO Yuan. Study on unsteady aerodynamic characteristics of typical flow regions around high-speed trains[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese). [13] JÖNSSON M. Numerical investigation of the flow underneath a train and the effect of design changes[D]. Luleả: LuleảUniversity of Technology, 2007. [14] MULD T W. Analysis of flow structures in wake flows for train aerodynamics[R]. Stockholm: Royal Institute of Technology, 2010. [15] 姚拴宝, 郭迪龙, 孙振旭, 等. 基于Kriging代理模型的高速列车头型多目标优化设计. 中国科学: 技术科学, 2013, 43(2): 186-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201302008.htmYAO Shuan-bao, GUO Di-long, SUN Zhen-xu, et al. Multiobjective optimization of the streamlined head of high-speed trains based on the Kriging model[J]. Scientia Sinica Technologica, 2013, 43(2): 186-200.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201302008.htm [16] BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7): 277-298. [17] KRAJNOVI C'S. Optimization of aerodynamic properties of high-speed trains with CFD and response surface models[J]. Lecture Notes in Applied and Computational Mechanics, 2009, 41: 197-211. [18] HEMIDA H, KRAJNOVI C'S. Numerical study of the unsteady flow structure around train-shaped body subjected to side winds[C]∥WESSELING P, OÑATE E, PÉRIAUX J. European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006. Delft: Delft University of Technology, 2006: 1-14. -