留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥混凝土路面板湿度翘曲应力计算方法

张翛 赵鸿铎 赵队家 孙立军

张翛, 赵鸿铎, 赵队家, 孙立军. 水泥混凝土路面板湿度翘曲应力计算方法[J]. 交通运输工程学报, 2016, 16(1): 1-7. doi: 10.19818/j.cnki.1671-1637.2016.01.001
引用本文: 张翛, 赵鸿铎, 赵队家, 孙立军. 水泥混凝土路面板湿度翘曲应力计算方法[J]. 交通运输工程学报, 2016, 16(1): 1-7. doi: 10.19818/j.cnki.1671-1637.2016.01.001
ZHANG Xiao, ZHAO Hong-duo, ZHAO Dui-jia, SUN Li-jun. Calculation method of moisture warping stress for cement concrete pavement slab[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 1-7. doi: 10.19818/j.cnki.1671-1637.2016.01.001
Citation: ZHANG Xiao, ZHAO Hong-duo, ZHAO Dui-jia, SUN Li-jun. Calculation method of moisture warping stress for cement concrete pavement slab[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 1-7. doi: 10.19818/j.cnki.1671-1637.2016.01.001

水泥混凝土路面板湿度翘曲应力计算方法

doi: 10.19818/j.cnki.1671-1637.2016.01.001
基金项目: 

国家自然科学基金项目 51308329

山西省青年科技研究基金项目 2013021028-2

山西省自然科学基金项目 2013011027-1

山西省交通科技项目 2013-1-10

山西省交通科技项目 2013-1-11

详细信息
    作者简介:

    张翛(1980-), 男, 山西神池人, 山西省交通科学研究院高级工程师, 工学博士, 从事道路工程研究

  • 中图分类号: U416.216

Calculation method of moisture warping stress for cement concrete pavement slab

More Information
Article Text (Baidu Translation)
  • 摘要: 为了分析湿度梯度对水泥混凝土路面力学性能的影响, 采用弹性力学的基本分析方法推导了非均匀无限水泥混凝土路面板在完全自由、轴向变形约束、弯曲变形约束、弯曲和轴向变形组合约束下的湿度翘曲应力计算公式, 利用弯矩等效原理, 推导了基于湿度翘曲应力的等效温度梯度公式, 基于连续配筋混凝土路面, 采用有限元法计算了非线性湿度分布情形下水泥稳定基层、粒料基层、沥青混凝土基层、沥青稳定基层、水泥土基层和自然土基层下的板顶和钢筋的应力与板的裂缝宽度。研究结果表明: 湿度翘曲应力的大小取决于相对湿度的分布形式; 板顶应力随基层刚度的增大而增大, 当基层刚度从0.08 MPa·mm-1增大到6.28 MPa·mm-1时, 板顶应力从4.1 MPa增大到6.3 MPa; 基层类型几乎不影响钢筋的应力; 裂缝端部水平位移从板底至板顶逐渐增大, 大约从0.0 mm增大到2.9 mm。

     

  • 图  1  无限大混凝土薄板

    Figure  1.  Infinite concrete thin slab

    图  2  CRCP二维有限元模型

    Figure  2.  2Dfinite element model of CRCP

    图  3  CRCP二维有限元模型网格划分

    Figure  3.  Mesh generation of 2Dfinite element model of CRCP

    图  4  黏结-滑移模型

    Figure  4.  Bonding-slip model

    图  5  应力计算点

    Figure  5.  Computation points of stress

    图  6  板顶水平拉应力曲线

    Figure  6.  Horizontal tensile stress curves at top of slab

    图  7  板顶米赛斯应力曲线

    Figure  7.  Mises stress curves at top of slab

    图  8  钢筋水平应力曲线

    Figure  8.  Horizontal stress curves of steel

    图  9  钢筋米赛斯应力曲线

    Figure  9.  Mises stress curves of steel

    图  10  裂缝水平位移曲线

    Figure  10.  Horizontal displacement curves of cracks

    表  1  弯矩和等效温度梯度计算结果

    Table  1.   Calculation results of bending moment and equivalent temperature gradient

    下载: 导出CSV

    表  2  CRCP二维有限元模型参数

    Table  2.   Parameters of 2Dfinite element model of CRCP

    下载: 导出CSV

    表  3  基层黏结-滑移参数

    Table  3.   Bonding-slip parameters of bases

    下载: 导出CSV

    表  4  基层强度

    Table  4.   Strengths of bases

    下载: 导出CSV
  • [1] 魏亚. 水泥混凝土路面板湿度翘曲形成机理及变形计算[J]. 工程力学, 2012, 29(11): 266-271. doi: 10.6052/j.issn.1000-4750.2011.04.0229

    WEI Ya. Mechanism of moisture warping and deformation calculations in concrete pavements[J]. Engineering Mechanics, 2012, 29(11): 266-271. (in Chinese). doi: 10.6052/j.issn.1000-4750.2011.04.0229
    [2] BUCH N, ZOLLINGER D G. Preliminary investigation on effects of moisture on concrete pavement strength and behavior[J]. Transportation Research Record, 1993(1382): 26-31.
    [3] JANSSEN D J. Moisture in portland cement concrete[J]. Transportation Research Record, 1987(1121): 40-44. https://trid.trb.org/view/282389
    [4] JEONG J H, ZOLLINGER D G. Environmental effects on the behavior of jointed plain concrete pavements[J]. Journal of Transportation Engineering, 2005, 131(2): 140-148. doi: 10.1061/(ASCE)0733-947X(2005)131:2(140)
    [5] DAVIS R E, TROXELL G E. Modulus of elasticity and Poisson's ratio for concrete and the influence of age and other factors upon these values[C]∥American Society for Testing Materials. Proceedings of American Society for Testing Materials 1929. West Conshohocken: American Society for Testing Materials, 1929: 678-710.
    [6] JOHNSTON C D. Concrete and its constituent materials in uniaxial tension and compression[D]. Belfast: Queen's University of Belfast, 1967.
    [7] WARD M A. The mechanism of tensile creep in concrete[J]. Magazine of Concrete Research, 1969, 21: 151-158. doi: 10.1680/macr.1969.21.68.151
    [8] YAMAN I O, AKTAN H M, HEARN N. Active and nonactive porosity in concrete Part II: evaluation of existing models[J]. Materials and Structures, 2002, 35(2): 110-116. doi: 10.1007/BF02482110
    [9] YAMAN I O, HEARN N, AKTAN H M. Active and nonactive porosity in concrete Part I: experimental evidence[J]. Materials and Structures, 2002, 35(2): 102-109. doi: 10.1007/BF02482109
    [10] WANG Hai-long, LI Qing-bin. Prediction of elastic modulus and Poisson's ratio for unsaturated concrete[J]. International Journal of Solids and Structures, 2007, 44(5): 1370-1379. doi: 10.1016/j.ijsolstr.2006.06.028
    [11] SHOUKRY S N, WILLIAM G W, DOWNIE B, et al. Effect of moisture and temperature on the mechanical properties of concrete[J]. Construction and Building Materials, 2011, 25(2): 688-696. doi: 10.1016/j.conbuildmat.2010.07.020
    [12] LIU Bao-dong, LU Wen-juan, LI Lin, et al. Effect of moisture content on static compressive elasticity modulus of concrete[J]. Construction and Building Materials, 2014, 69: 133-142. doi: 10.1016/j.conbuildmat.2014.06.094
    [13] MOHAMED A R, HANSEN W. Effect of nonlinear temperature gradient on curling stress in concrete pavements[J]. Transportation Research Record, 1997(1568): 65-71.
    [14] WEI Y, HANSEN W. Characterization of moisture transport and its effect on deformations in jointed plain concrete pavement[J]. Transportation Research Record, 2011(2240): 9-15.
    [15] IOANNIDES A M, KHAZANOVICH L. Nonlinear temperature effects on multilayered concrete pavements[J]. Journal of Transportation Engineering, 1998, 124(2): 128-136. doi: 10.1061/(ASCE)0733-947X(1998)124:2(128)
    [16] BRADBURY R D. Reinforced Concrete Pavements[M]. Washington DC: National Academy of Sciences, 1938.
    [17] WESTERGAARD H M. Analysis of stresses in concrete pavements due to variations of temperature[C]∥UPHAM C M, STEINBERG S S. Proceedings of the Sixth Annual Meeting of the Highway Research Board. Washington DC: Highway Research Board, 1927: 201-215.
    [18] PICKETT G. Effect of aggregate on shrinkage of concrete and a hypothesis concerning shrinkage[J]. Journal of the American Concrete Institute, 1956, 56: 581-590. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/11617
    [19] KIM S M, WON M C. Horizontal cracking in continuously reinforced concrete pavements[J]. ACI Structural Journal, 2004, 101(6): 784-791. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=13453
    [20] KIM S M, WON M C, MCCULLOUGH B F. Mechanistic modeling of continuously reinforced concrete pavement[J]. ACI Structural Journal, 2003, 100(5): 674-682. https://www.researchgate.net/publication/281475070_Mechanistic_Modeling_of_Continuously_Reinforced_Concrete_Pavement
    [21] KIM S M, WON M, MCCULLOUGH B F. Numerical modeling of continuously reinforced concrete pavement subjected to environmental loads[J]. Transportation Research Record, 1998(1629): 76-89.
    [22] ZHANG J, LI V C. Influence of supporting base characteristics on shrinkage-induced stresses in concrete pavements[J]. Journal of Transportation Engineering, 2001, 127(6): 455-462. https://trid.trb.org/view.aspx?id=695469
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1083
  • HTML全文浏览量:  208
  • PDF下载量:  793
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-13
  • 刊出日期:  2016-02-25

目录

    /

    返回文章
    返回