Calculation method of moisture warping stress for cement concrete pavement slab
-
摘要: 为了分析湿度梯度对水泥混凝土路面力学性能的影响, 采用弹性力学的基本分析方法推导了非均匀无限水泥混凝土路面板在完全自由、轴向变形约束、弯曲变形约束、弯曲和轴向变形组合约束下的湿度翘曲应力计算公式, 利用弯矩等效原理, 推导了基于湿度翘曲应力的等效温度梯度公式, 基于连续配筋混凝土路面, 采用有限元法计算了非线性湿度分布情形下水泥稳定基层、粒料基层、沥青混凝土基层、沥青稳定基层、水泥土基层和自然土基层下的板顶和钢筋的应力与板的裂缝宽度。研究结果表明: 湿度翘曲应力的大小取决于相对湿度的分布形式; 板顶应力随基层刚度的增大而增大, 当基层刚度从0.08 MPa·mm-1增大到6.28 MPa·mm-1时, 板顶应力从4.1 MPa增大到6.3 MPa; 基层类型几乎不影响钢筋的应力; 裂缝端部水平位移从板底至板顶逐渐增大, 大约从0.0 mm增大到2.9 mm。Abstract: In order to analyze the impact of moisture gradient on mechanical properties of cement concrete pavement, the calculation formulas of moisture warping stress for nonhomogeneous infinite pavement slabs subjected to free-rein constrain, axial deformation constraint, bending deformation constraint, bending-axial deformation constraint were derived by using the basic analysis method of elasticity mechanics.The formula of equivalent temperature gradient based on the moisture warping stress was derived by using the equivalent principle of moment.Based on continuously reinforced concrete pavement(CRCP), the stresses and crack widths of concrete slab and steel stresses were computed by using the finite element method based on cement stabilized base, stable aggregate base, asphalt concrete base, asphalt stabilized base, limestone soil base and natural soil base.Research result shows that the magnitude of moisture warping stress depends on the relative humidity distribution; the surface stress at slab middle increaseswith the increase of base stiffness, when the stiffness of base increases from 0.08MPa·mm-1 to6.28 MPa·mm-1, the surface stress increases from 4.1 MPa to 6.3 MPa; the type of base hardly has influence on the stress of steel; the horizontal displacement of crack end gradually increases from 0.0 mm to 2.9 mm from slab bottom to surface.
-
表 1 弯矩和等效温度梯度计算结果
Table 1. Calculation results of bending moment and equivalent temperature gradient
表 2 CRCP二维有限元模型参数
Table 2. Parameters of 2Dfinite element model of CRCP
表 3 基层黏结-滑移参数
Table 3. Bonding-slip parameters of bases
表 4 基层强度
Table 4. Strengths of bases
-
[1] 魏亚. 水泥混凝土路面板湿度翘曲形成机理及变形计算[J]. 工程力学, 2012, 29(11): 266-271. doi: 10.6052/j.issn.1000-4750.2011.04.0229WEI Ya. Mechanism of moisture warping and deformation calculations in concrete pavements[J]. Engineering Mechanics, 2012, 29(11): 266-271. (in Chinese). doi: 10.6052/j.issn.1000-4750.2011.04.0229 [2] BUCH N, ZOLLINGER D G. Preliminary investigation on effects of moisture on concrete pavement strength and behavior[J]. Transportation Research Record, 1993(1382): 26-31. [3] JANSSEN D J. Moisture in portland cement concrete[J]. Transportation Research Record, 1987(1121): 40-44. https://trid.trb.org/view/282389 [4] JEONG J H, ZOLLINGER D G. Environmental effects on the behavior of jointed plain concrete pavements[J]. Journal of Transportation Engineering, 2005, 131(2): 140-148. doi: 10.1061/(ASCE)0733-947X(2005)131:2(140) [5] DAVIS R E, TROXELL G E. Modulus of elasticity and Poisson's ratio for concrete and the influence of age and other factors upon these values[C]∥American Society for Testing Materials. Proceedings of American Society for Testing Materials 1929. West Conshohocken: American Society for Testing Materials, 1929: 678-710. [6] JOHNSTON C D. Concrete and its constituent materials in uniaxial tension and compression[D]. Belfast: Queen's University of Belfast, 1967. [7] WARD M A. The mechanism of tensile creep in concrete[J]. Magazine of Concrete Research, 1969, 21: 151-158. doi: 10.1680/macr.1969.21.68.151 [8] YAMAN I O, AKTAN H M, HEARN N. Active and nonactive porosity in concrete Part II: evaluation of existing models[J]. Materials and Structures, 2002, 35(2): 110-116. doi: 10.1007/BF02482110 [9] YAMAN I O, HEARN N, AKTAN H M. Active and nonactive porosity in concrete Part I: experimental evidence[J]. Materials and Structures, 2002, 35(2): 102-109. doi: 10.1007/BF02482109 [10] WANG Hai-long, LI Qing-bin. Prediction of elastic modulus and Poisson's ratio for unsaturated concrete[J]. International Journal of Solids and Structures, 2007, 44(5): 1370-1379. doi: 10.1016/j.ijsolstr.2006.06.028 [11] SHOUKRY S N, WILLIAM G W, DOWNIE B, et al. Effect of moisture and temperature on the mechanical properties of concrete[J]. Construction and Building Materials, 2011, 25(2): 688-696. doi: 10.1016/j.conbuildmat.2010.07.020 [12] LIU Bao-dong, LU Wen-juan, LI Lin, et al. Effect of moisture content on static compressive elasticity modulus of concrete[J]. Construction and Building Materials, 2014, 69: 133-142. doi: 10.1016/j.conbuildmat.2014.06.094 [13] MOHAMED A R, HANSEN W. Effect of nonlinear temperature gradient on curling stress in concrete pavements[J]. Transportation Research Record, 1997(1568): 65-71. [14] WEI Y, HANSEN W. Characterization of moisture transport and its effect on deformations in jointed plain concrete pavement[J]. Transportation Research Record, 2011(2240): 9-15. [15] IOANNIDES A M, KHAZANOVICH L. Nonlinear temperature effects on multilayered concrete pavements[J]. Journal of Transportation Engineering, 1998, 124(2): 128-136. doi: 10.1061/(ASCE)0733-947X(1998)124:2(128) [16] BRADBURY R D. Reinforced Concrete Pavements[M]. Washington DC: National Academy of Sciences, 1938. [17] WESTERGAARD H M. Analysis of stresses in concrete pavements due to variations of temperature[C]∥UPHAM C M, STEINBERG S S. Proceedings of the Sixth Annual Meeting of the Highway Research Board. Washington DC: Highway Research Board, 1927: 201-215. [18] PICKETT G. Effect of aggregate on shrinkage of concrete and a hypothesis concerning shrinkage[J]. Journal of the American Concrete Institute, 1956, 56: 581-590. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/11617 [19] KIM S M, WON M C. Horizontal cracking in continuously reinforced concrete pavements[J]. ACI Structural Journal, 2004, 101(6): 784-791. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=13453 [20] KIM S M, WON M C, MCCULLOUGH B F. Mechanistic modeling of continuously reinforced concrete pavement[J]. ACI Structural Journal, 2003, 100(5): 674-682. https://www.researchgate.net/publication/281475070_Mechanistic_Modeling_of_Continuously_Reinforced_Concrete_Pavement [21] KIM S M, WON M, MCCULLOUGH B F. Numerical modeling of continuously reinforced concrete pavement subjected to environmental loads[J]. Transportation Research Record, 1998(1629): 76-89. [22] ZHANG J, LI V C. Influence of supporting base characteristics on shrinkage-induced stresses in concrete pavements[J]. Journal of Transportation Engineering, 2001, 127(6): 455-462. https://trid.trb.org/view.aspx?id=695469 -