Mechanical responses of Boeing 747 running on runways
-
摘要: 根据丹佛国际机场跑道大量实测的道面应变与弯沉, 分析了波音747型飞机滑行时道面不同位置弯沉和应变的主要特征, 研究了不同接缝传力特性、不同位置的残留变形与应变率。分析结果表明: 板边与板中有2个应变峰值, 对应于轮轴个数; 板横缝方向(与飞机滑行方向垂直)不存在反向应变, 而纵缝方向(与飞机滑行方向平行)存在2次拉压应变, 纵缝板边底部轮轴间的应变峰值回复量显著, 易发生开裂和疲劳破坏, 其底部应变峰值和应变峰值回复量分别是板边顶部的1.2倍和2.5倍; 飞机滑行时接缝处的应变率最大, 最大拉伸和压缩应变率分别为9.1×10-4 s-1和7.6×10-4 s-1, 在混凝土板中引起的应变率属于准静态应变率, 忽略其对混凝土板变形的影响; 板中弯沉为单峰值曲线, 而板角与横缝板边弯沉为双峰值曲线; 在同一板中, 板角处的相对残留变形最大, 板中处最小, 板角处的相对残留变形率是板中处的2.60~4.59倍, 相比于其他位置, 板角更容易与基层发生脱空; 铰缝传力系数接近1, 假缝与铰缝相比传力效率较低, 其传力特性具有明显的方向性, 而铰缝传力没有明显的方向性。Abstract: Based on the large amounts of measured strains and deflections of runway pavement at Denver International Airport, the main characteristics of deflections and strains at different positions of pavement were analyzed when Boeing 747 was running on runway, and the load transfer capacities of different joints, the residual deformations and strain rates of pavement at the typical positions were researched. Analysis result shows that the edge and middle of slab have 2 strain peaks respectively, which corresponds with the number of aircraft's main gear axles. The transverse strain (perpendicular to the running direction of aircraft) only has one type, while the longitudinal strain (parallel to the running direction of aircraft) shows 2 times'transformation between tension and compression. The peak-strain recovery between gear axles at the bottom of longitudinal joint edge is significant, its peak strain and peak-strain recovery are 1.2 times and 2.5 times as much as the values at the top of longitudinal joint edge respectively, which means more prone to cracking and fatigue damage. When the aircraft is running, the maximum strainrates occur at the joint, and the maximum tensile and compressive strain rates are 9.1×10-4 s-1 and 7.6×10-4 s-1 respectively, and belong to quasi-static strain rate, so their impact on the deformation of concrete slab are ignored. The deflection curves at the slab's middle have 1 peak, but there are 2 peaks at the slab's corner and transverse joint edge. The relative residual deformation at corner of slab is largest, the deformation at the middle of slab is least, the relative residual deformation rate at the corner of slab is 2.60-4.59 times as large as the value at the middle of slab, and compared with other locations, the corner more easily occurs void with base. The load-transferred coefficient of hinged joint is about 1, the load-transferred coefficient of dummy joint is lower compared with hinged joint, the load-transferred characteristic of dummy joint has directionality, but the load-transferred characteristic of hinged joint is non-directional.
-
Key words:
- airport engineering /
- runway /
- mechanical response /
- strain /
- deflection /
- load-transferred coefficient
-
表 1 不同位置处的相对残留变形率
Table 1. Relative residual deformation rates at different locations
表 2 假缝的传力系数
Table 2. Load-transferred coefficients of dummy joint
表 3 铰缝的传力系数
Table 3. Load-transferred coefficients of hinged joint
-
[1] 翁兴中, 寇雅楠, 颜祥程. 飞机滑行作用下水泥混凝土道面板动响应分析[J]. 振动与冲击, 2012, 31(14): 79-84. doi: 10.3969/j.issn.1000-3835.2012.14.017WENG Xing-zhong, KOU Ya-nan, YAN Xiang-cheng. Dynamic response of cement concrete pavement under aircraft taxiing load[J]. Journal of Vibration and Shock, 2012, 31(14): 79-84. (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.14.017 [2] 黄晓明, 邓学钧. 移动荷载作用下粘弹性文克勒地基板的力学分析[J]. 重庆交通学院学报, 1990, 9(2): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT199002007.htmHUANG Xiao-ming, DENG Xue-jun. The mechanical analysis of plate on visco-elastic Winkler foundation under moving load[J]. Journal of Chongqing Jiaotong Institute, 1990, 9(2): 45-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT199002007.htm [3] 孙璐, 邓学钧. 运动分布荷载作用下弹性地基上无限大板瞬态响应[J]. 应用力学学报, 1997, 14(2): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX702.012.htmSUN Lu, DENG Xue-jun. Transient response for infinite plate on Winkler foundation by a moving distributed load[J]. Chinese Journal of Applied Mechanics, 1997, 14(2): 72-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX702.012.htm [4] 孙璐, 邓学钧. 运动负荷下粘弹性Kelvin地基上无限大板的稳态响应[J]. 岩土工程学报, 1997, 19(2): 14-22. doi: 10.3321/j.issn:1000-4548.1997.02.003SUN Lu, DENG Xue-jun. Steady response of infinite plate on viscoelastic Kelvin foundation to moving load[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(2): 14-22. (in Chinese) doi: 10.3321/j.issn:1000-4548.1997.02.003 [5] 蒋建群, 周华飞, 张土乔. 移动荷载下粘弹性地基上无限大板的稳态响应[J]. 中国公路学报, 2006, 19(1): 6-11. doi: 10.3321/j.issn:1001-7372.2006.01.002JIANG Jian-qun, ZHOU Hua-fei, ZHANG Tu-qiao. Steady state response of infinite plate on visco-elastic foundation subjected to moving load[J]. China Journal of Highway and Transport, 2006, 19(1): 6-11. (in Chinese) doi: 10.3321/j.issn:1001-7372.2006.01.002 [6] 郑飞, 翁兴中. 飞机荷载作用下水泥混凝土道面板应力计算方法[J]. 交通运输工程学报, 2010, 10(4): 8-15. doi: 10.3969/j.issn.1671-1637.2010.04.002ZHENG Fei, WENG Xing-zhong. Calculating methods of stress for cement concrete pavement slab under plane loads[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 8-15. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.04.002 [7] 周正峰, 凌建明, 袁捷. 机场水泥混凝土道面接缝传荷能力分析[J]. 土木工程学报, 2009, 42(2): 112-118. doi: 10.3321/j.issn:1000-131X.2009.02.017ZHOU Zheng-feng, LING Jian-ming, YUAN Jie. 3-D finite element analysis of the load transfer efficiency of joints of airport rigid pavement[J]. China Civil Engineering Journal, 2009, 42(2): 112-118. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.02.017 [8] BRILL D R, PARSONS I D. Three-dimensional finite element analysis in airport pavement design[J]. The International Journal of Geomechanics, 2001, 1(3): 273-290. doi: 10.1061/(ASCE)1532-3641(2001)1:3(273) [9] SUN Lu, ZHANG Zhan-ming, RUTH J. Modeling indirect statistics of surface roughness[J]. Journal of Transportation Engineering, 2001, 127(2): 105-111. [10] KIM S, WON M, MCCULLOUGH B F. Airport pavement response under moving dynamic aircraft loads[C]//SPROULE W, JANSEN S. Designing, Constructing, Maintaining, and Financing Today's Airport Projects. Reston: American Society of Civil Engineers, 2002: 1-10. [11] KIM J, HJELMSTAD K D. Three-dimensional finite element analysis of doweled joints for airport pavements[J]. Transportation Research Record, 2003(1853): 100-109. [12] 凌建明, 刘文, 赵鸿铎. 大型军用飞机多轮荷载作用下水泥混凝土道面的结构响应[J]. 土木工程学报, 2007, 40(4): 60-65. doi: 10.3321/j.issn:1000-131X.2007.04.011LING Jian-ming, LIU Wen, ZHAO Hong-duo. Mechanical responses of rigid airport pavement to multiple-gear military aircraft loadings[J]. China Civil Engineering Journal, 2007, 40(4): 60-65. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.04.011 [13] 周正峰, 凌建明. 基于ABAQUS的机场刚性道面结构有限元模型[J]. 交通运输工程学报, 2009, 9(3): 39-44. doi: 10.3321/j.issn:1671-1637.2009.03.007ZHOU Zheng-feng, LING Jian-ming. Finite element model of rigid airport pavement structure baseed on ABAQUS[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 39-44. (in Chinese) doi: 10.3321/j.issn:1671-1637.2009.03.007 [14] SAWANT V. Dynamic analysis of rigid pavement with vehicle-pavement interaction[J]. International Journal of Pavement Engineering, 2009, 10(1): 63-72. doi: 10.1080/10298430802342716 [15] 娄平, 曾庆元. 移动荷载作用下板式轨道的有限元分析[J]. 交通运输工程学报, 2004, 4(1): 29-33. doi: 10.3321/j.issn:1671-1637.2004.01.008LOU Ping, ZENG Qing-yuan. Finite element analysis of slab track subjected to moving load[J]. Journal of Traffic and Transportation Engineering, 2004, 4(1): 29-33. (in Chinese) doi: 10.3321/j.issn:1671-1637.2004.01.008 [16] PATIL V A, SAWANT V A, DEB K. 3 Dfinite-element dynamic analysis of rigid pavement using infinite elements[J]. International Journal of Geomechanics, 2013, 13(5): 533-544. doi: 10.1061/(ASCE)GM.1943-5622.0000255 [17] PATIL V A, SAWANT V A, DEB K. 2-D finite element analysis of rigid pavement considering dynamic vehiclepavement interaction effects[J]. Applied Mathematical Modelling, 2013, 37(3): 1282-1294. doi: 10.1016/j.apm.2012.03.034 [18] ZOKAEI-ASHTIANI A, TIRADO C, CARRASCO C, et al. Impact of different approaches to modelling rigid pavement base layers on slab curling stresses[J]. International Journal of Pavement Engineering, 2015, DOI: 10.1080/10298436.2015.1019505. [19] VAJARASATHIRA K, YENER M, TING E C. Aircraftpavement interaction in runway analysis[J]. Journal of Structural Engineering, 1984, 110(5): 1008-1020. [20] TAHERI M R, ZAMAN M M, ALVAPPILLAI A. Dynamic response of concrete pavements to moving aircraft[J]. Applied Mathematical Modelling, 1990, 14(11): 562-575. [21] RIAD M Y, SHOUKRY S N, WILLIAM G W, et al. Effect of skewed joints on the performance of jointed concrete pavement through 3D dynamic finite element analysis[J]. International Journal of Pavement Engineering, 2009, 10(4): 251-263. [22] LEDBETTER R H. Pavement response to aircraft dynamic loads. VolumeⅢ[R]. Vicksburg: Army Engineer Waterways Experiment Station, 1975. [23] 杨斐, 杨宇亮, 孙立军. 飞机起降荷载作用下的场道地基沉降[J]. 同济大学学报: 自然科学版, 2008, 36(6): 744-748. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200806006.htmYANG Fei, YANG Yu-liang, SUN Li-jun. Settlement of runway subgrade under moving aircraft loads[J]. Journal of Tongji University: Natural Science, 2008, 36(6): 744-748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200806006.htm [24] FANG Ying-wu. Analysis of load responses in PCC airport pavement[J]. International Journal of Pavement Engineering, 2000, 1(1): 1-14. [25] BRILL D R. Field verification of a 3Dfinite element rigid airport pavement model[R]. Washington DC: Federal Aviation Administration, US Department of Transportation, 2000. -