Relationship among internal pressure, body air tightness and external pressure of rail vehicle
-
摘要: 采用理论分析、数值计算与模型试验相结合的方法, 研究了轨道车辆车体气密性评价指标体系, 并采用泄压时间或等效泄压孔面积表达车体气密性; 给出了车外瞬态压力向车内传递的规律, 得到了车内压力与进出车体空气流量理论关系式; 采用大刚度车体模型研究了车内压力与车体气密性、车外压力变化关系, 设计了带有泄压孔的大刚度车体模型, 得出车体泄压孔半径与泄压时间的关系式, 并将5种不同泄压时间的大刚度车体模型先后置于交变压力模拟试验台密闭室中进行试验, 分析了试验数据。分析结果表明: 当车体空气进出口体积流量恒定时, 车内压力随时间呈线性关系变化; 当车体空气进出口流量为关于时间的函数时, 车内压力为车体空气进出口流量关于时间的积分; 不同泄压孔径车体模型的试验和计算泄压时间误差绝对值不超过6.5%, 说明通过数值计算拟合的泄压时间和泄压孔半径关系式基本正确; 车体气密性与车内压力变化率基本呈幂函数关系变化; 车内压力变化率与车外压力幅值基本呈线性关系变化; 得到了大刚度车体模型车内空气压力变化率与车体气密性、车内外压力幅值关系式, 为制定科学、合理的轨道车辆车体气密性指标提供了理论支撑。Abstract: The evaluation index system of the air tightness of a rail vehicle body was researched by using the theoretical analysis, numerical calculation, and model test. The air tightness of a vehicle body was expressed by the pressure relief time or equivalent pressure relief hole area. The law of external transient pressure transferring to the inside of the vehicle body was given, and the theoretical relation between the internal pressure and the air flow in and out of the vehicle body was obtained. Based on the large-stiffness vehicle body model, the relationships among the internal pressure, air tightness, and external pressure of vehicle body were researched. A largestiffness vehicle body model with a pressure relief hole was designed, and the relationalexpression between the pressure relief hole radius and pressure relief time was obtained. The five kinds of large-stiffness vehicle body models with five different pressure relief times were used for a test in the closed chamber of the alternating-pressure simulation test bench, and the test data were analyzed. Analysis result shows that the internal pressure of the vehicle body changes linearly with time when the volumetric flow rates of the air inlet and outlet are constant. When the flow rates of the air inlet and outlet are the function of time, the change of internal pressure is the integral of the flows of air inlet and outlet about time. The absolute errors of tested and calculated pressure relief times of the vehicle body models with different pressure relief hole radii are less than 6.5%, which shows that the relationship between the pressure relief time and the pressure relief hole radius obtained by the numerical calculation is basically correct. The relationship between the vehicle body air tightness and internal pressure change rate is a power function, and the internal pressure change rate and external pressure amplitude are linear. The relationship among the internal pressure, vehicle body air tightness, and external pressure of the large-stiffness body model is obtained, and it can provide theoretical support for the formulation of a scientific and reasonable air tightness index of the vehicle body.
-
表 1 不同泄压孔半径对应的泄压时间
Table 1. Pressure relief times corresponding to different pressure relief hole radii
表 2 不同孔径车体模型的泄压时间
Table 2. Pressure relief times of vehicle body models with different pressure relief hole radii
表 3 大刚度车体模型气密性试验数据
Table 3. Experimental air tightness data of large-stiffness rail vehicle body model
表 4 车内压力变化率与车体泄压时间关系
Table 4. Relationship between internal pressure change rate and vehicle body pressure relief time
表 5 车内压力变化率与车外压力幅值关系
Table 5. Relationship between internal pressure change rate and external pressure amplitude
表 6 系数a、m和车外压力幅值P的关系
Table 6. Relationship among coefficients a, mand external pressure amplitude P
表 7 系数b、c、m与泄压时间t的关系
Table 7. Relationship among coefficients b, c, m and pressure relief time t
-
[1] 万晓燕, 吴剑. 时速200km动车组通过隧道时空气动力学效应现场试验与研究[J]. 现代隧道技术, 2006, 43 (1): 43-48. doi: 10.3969/j.issn.1009-6582.2006.01.008WAN Xiao-yan, WU Jian. In-situ test and study on the aerodynamic effect of the rolling stock passing through tunnels with a speed of 200km·h-1[J]. Modern Tunnelling Technology, 2006, 43 (1): 43-48. (in Chinese). doi: 10.3969/j.issn.1009-6582.2006.01.008 [2] 朱海燕, 张翼, 赵怀瑞, 等. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17 (2): 64-72. http://transport.chd.edu.cn/article/id/201702007ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, et al. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (2): 64-72. (in Chinese). http://transport.chd.edu.cn/article/id/201702007 [3] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38 (6): 469-514. [4] SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33: 371-414. doi: 10.1146/annurev.fluid.33.1.371 [5] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17 (4): 30-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201504005.htmTIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Engineering Sciences, 2015, 17 (4): 30-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201504005.htm [6] 朱一妃. 高速列车车内压力波动特性研究[D]. 北京: 北京交通大学 , 2017.ZHU Yi-fei. Study on pressure fluctuations charateristics in high-speed train carriages[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese). [7] 孟添. 列车气密性及车内热舒适性研究[D]. 成都: 西南交通大学, 2017.MENG Tian. Study on air tightness and thermal comfort of train[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [8] 张登春, 翁培奋. 载人列车车厢内空气流场温度场数值模拟[J]. 计算力学学报, 2007, 24 (6): 904-910. doi: 10.3969/j.issn.1007-4708.2007.06.034ZHANG Deng-chun, WENG Pei-fen. Numerical simulation of airflow and temperature fields in railway occupied passenger car[J]. Chinese Journal of Computational Mechanics, 2007, 24 (6): 904-910. (in Chinese). doi: 10.3969/j.issn.1007-4708.2007.06.034 [9] 梅元贵, 周朝晖. 高速列车通过隧道时诱发车厢内压力波动的数值分析[J]. 铁道学报, 2005, 27 (5): 36-40. doi: 10.3321/j.issn:1001-8360.2005.05.007MEI Yuan-gui, ZHOU Chao-hui. Numerical analysis of transient pressures inside high speed passenger trains through tunnels[J]. Journal of the China Railway Society, 2005, 27 (5): 36-40. (in Chinese). doi: 10.3321/j.issn:1001-8360.2005.05.007 [10] HWANG J, LEE D H. Unsteady aerodynamic loads on high speed trains passing by each other[J]. KSME International Journal, 2000, 14 (8): 867-878. doi: 10.1007/BF03184475 [11] KWON H B, YUN S H, NAM S W. Numerical simulation of pressure change inside cabin of a train passing through a tunnel[J]. Journal of Computational Fluids Engineering, 2012, 17 (1): 23-28. doi: 10.6112/kscfe.2012.17.1.023 [12] KWON H B. A study on the minimum cross-sectional area of high-speed railway tunnel satisfying passenger ear discomfort criteria[J]. Journal of Computational Fluids Engineering, 2015, 20 (3): 62-69. doi: 10.6112/kscfe.2015.20.3.62 [13] MOON J H, LEE J W, JEONG C H, et al. Thermal comfort analysis in a passenger compartment considering the solar radiation effect[J]. International Journal of Thermal Sciences, 2016, 107: 77-88. doi: 10.1016/j.ijthermalsci.2016.03.013 [14] PALMERO N M, VARDY A. Tunnel gradients and aural health criterion for train passengers[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228 (7): 821-832. [15] SUN Zhen-xu, YANG Guo-wei, ZHU Lan. Study on the critical diameter of the subway tunnel based on the pressure variation[J]. Science China: Technological Sciences, 2014, 57 (10): 2307-2043. [16] KRAJNOVI'C S. Optimization of aerodynamic properties of high-speed trains with CFD and response surface models[J]. The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains, 2009, 41 (2): 197-211. [17] 苏晓峰, 程建峰, 韩增盛. 高速列车气密性研究综述[J]. 铁道车辆, 2004, 42 (5): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200405004.htmSU Xiao-feng, CHENG Jian-feng, HAN Zeng-sheng. Survey on research of air-tightness of high speed trains[J]. Rolling Stock, 2004, 42 (5): 16-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200405004.htm [18] 王悦明. 铁路客车空气压力密封性问题[J]. 铁道机车车辆, 2000, 20 (4): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200004001.htmWANG Yue-ming. Problem about the railway coach airproof[J]. Railway Locomotive and Car, 2000, 20 (4): 4-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200004001.htm [19] BAKER C J, STERLING M, BOUFERROUK A, et al. Aerodynamic forces on multiple unit trains in cross winds[J]. Journal of Fluids Engineering, 2009, 131 (10): 1-4. [20] BELLENOUE M, MORINIERE V, KAGEYAMA T. Experimental 3-D simulation of the compression wave, due to train-tunnel entry[J]. Journal of Fluids and Structures, 2002, 16 (5): 581-595. [21] 李树典, 周新喜. CRH2型200km·h-1动车组车内压力波动控制研究[J]. 机车电传动, 2009 (2): 6-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200902004.htmLI Shu-dian, ZHOU Xin-xi. Study on the control of pressure fluctuation in CRH2type 200km·h-1 EMUs[J]. Electric Drive for Locomotives, 2009 (2): 6-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200902004.htm [22] 李丰, 林贤军. CRH380A型动车组车体气密性试验方法研究[J]. 机车车辆工艺, 2013 (6): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL201306015.htmLI Feng, LIN Xian-jun. Research of the tightness test methods on CRH380A EMU body[J]. Locomotive and Rolling Stock Technology, 2013 (6): 36-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL201306015.htm [23] 刘和平, 刘然, 刘殿海, 等. 超声波泄漏检测技术在高速动车组气密性方面的应用研究[J]. 机械设计与制造, 2016 (11): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201611015.htmLIU He-ping, LIU Ran, LIU Dian-hai, et al. Application of ultrasonic leak detection on the air tightness testing of high speed EMU[J]. Machinery Design and Manufacture, 2016 (11): 59-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201611015.htm [24] 张方涛, 李文彪, 李兵. 动车组气密性技术探讨[J]. 铁道机车车辆, 2015, 35 (6): 44-46, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201506013.htmZHANG Fang-tao, LI Wen-biao, LI Bing. Technical discussion of the EMU air-tightness[J]. Railway Locomotive and Car, 2015, 35 (6): 44-46, 72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201506013.htm [25] 尹法伟, 陈兴刚, 高兴华. 动车组气密性试验装置的研制[J]. 铁道车辆, 2014, 52 (7): 35-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201407014.htmYIN Fa-wei, CHEN Xing-gang, GAO Xing-hua. Research of the EMU tightness test device[J]. Rolling Stock, 2014, 52 (7): 35-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201407014.htm [26] 王前选, 梁习锋, 高广军. 高速列车车体交变气动载荷试验装置研究[J]. 铁道学报, 2013, 35 (8): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201308010.htmWANG Qian-xuan, LIANG Xi-feng, GAO Guang-jun. Research on experimental facility of alternating aerodynamic loads of car bodies of high-speed train[J]. Journal of the China Railway Society, 2013, 35 (8): 29-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201308010.htm [27] 王前选, 梁习锋, 任鑫. 列车高速通过隧道时车内压力波模拟试验研究[J]. 中南大学学报: 自然科学版, 2014, 45 (5): 1699-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201405044.htmWANGQian-xuan, LIANGXi-feng, RENXin. Experimental research on simulation of interior pressure of train passing through tunnel at high speed[J]. Journal of Central South University: Science and Technology, 2014, 45 (5): 1699-1704. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201405044.htm [28] 赵宇艳, 蒋莉. 动车组风挡气密性测试系统的设计[J]. 常州信息职业技术学院学报, 2014, 13 (2): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CZXZ201402007.htmZHAO Yu-yan, JIANG Li. Design of air tightness performance test system of motor train unit windshield[J]. Journal of Changzhou Vocational College of Information Technology, 2014, 13 (2): 15-19. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CZXZ201402007.htm [29] 李国清, 李明, 郭伟, 等. 高速综合检测列车头车气密性评估[J]. 机车电传动, 2012 (3): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201203015.htmLI Guo-qing, LI Ming, GUO Wei, et al. Leading car air tightness assessment of high-speed inspection train[J]. Electric Drive for Locomotives, 2012 (3): 45-48. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201203015.htm [30] 郑锦瑞. 浅谈CRH6型动车组塞拉门气密试验的问题[J]. 铁道车辆, 2016, 54 (5): 32-33, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201605011.htmZHENG Jin-rui. Discussion of the problem in air tight test on plug doors for CRH6multiple units[J]. Rolling Stock, 2016, 54 (5): 32-33, 42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201605011.htm [31] 亢文祥, 陈春棉, 熊小慧. 动车组新风换气装置对车内压力波动影响试验研究[J]. 铁道科学与工程学报, 2011, 8 (5): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201105018.htmKANG Wen-xiang, CHEN Chun-mian, XIONG Xiao-hui. Experimental research on the pressure variation effect inside the car caused by CRH2 EMU new-wind ventilator[J]. Journal of Railway Science and Engineering, 2011, 8 (5): 84-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201105018.htm [32] 施红生, 徐晓梅, 郭红梅, 等. 基于旅客乘坐舒适性需求的高速动车组车内环境技术条件[J]. 中国铁道科学, 2015, 36 (3): 100-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503017.htmSHI Hong-sheng, XU Xiao-mei, GUO Hong-mei, et al. Technical conditions for interior environment of high speed EMU based on passenger ride comfort demand[J]. China Railway Science, 2015, 36 (3): 100-112. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503017.htm [33] 李玉洁, 梅元贵. 动车组车辆气密性指标的初步探讨[J]. 铁道机车车辆, 2009, 29 (2): 31-35.LI Yu-jie, MEI Yuan-gui. Primary discussion about pressure tightness of electric mutiple units[J]. Railway Locomotive and Car, 2009, 29 (2): 31-35. (in Chinese). [34] 李文夏, 徐世东. 高速动车组和客车气密性技术与标准[J]. 铁道技术监督, 2013, 41 (5): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201305007.htmLI Wen-xia, XU Shi-dong. The air tightness technologies and standards for EMU and passenger[J]. Railway Quality Control, 2013, 41 (5): 10-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201305007.htm [35] 陈春俊, 聂锡成, 唐猛. 车外空气压力作用下的CRH2型动车组车内空气压力传递函数模型[J]. 中国铁道科学, 2013, 34 (4): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201304016.htmCHEN Chun-jun, NIE Xi-cheng, TANG Meng. Transfer function model of the air pressure inside CRH2 EMU under outside air pressure[J]. China Railway Science, 2013, 34 (4): 84-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201304016.htm -