Effect of blade tip clearance on waterjet propulsion hydrodynamic performance
Article Text (Baidu Translation)
-
摘要: 分别以设计参数相同的混流式喷水推进泵与轴流式喷水推进泵为对象, 基于剪切应力运输湍流模型、隐式多网格耦合算法与全结构化网格, 对4种不同叶顶间隙的水力性能进行数值模拟, 分析了叶顶间隙对喷水推进水力性能的影响, 研究了叶顶间隙影响程度与喷水推进器类型的关系。研究结果表明: 2种喷水推进泵的扬程、效率均随叶顶间隙增大而减小; 随着叶顶间隙的增大, 混流泵消耗功率先增大后减小, 当叶顶间隙为1.3mm时消耗功率最大, 而轴流泵消耗功率单调减小; 混流泵叶顶间隙变化引起的喷泵效率改变量不受流量影响, 而轴流泵效率变化量随流量增大而增大, 以较大叶顶间隙为基准, 且叶顶间隙变化量相同时, 混流泵效率变化较大, 轴流泵效率变化较小; 混流泵与轴流泵性能存在差异的主要原因是外形结构不同导致间隙涡对叶顶间隙泄流的作用大小不同; 当叶顶间隙由0.7mm增大至1.6mm时, 2种喷水推进器推力效率变化量在1%以内; 随着叶顶间隙的增大, 2种喷水推进器消耗功率的变化趋势与喷水推进泵相同, 且轴流式喷水推进器总推力、功率变化幅值大于混流式, 即混流式喷水推进器对叶顶间隙变化的适应性更好。Abstract: Mixed-flow and axial-flow waterjet pumps with the same design parameters were selected as objects respectively. The hydrodynamic performances of mixed-flow and axial-flow waterjet pumps with four blade tip clearances were numerically simulated based on the shear stress transport turbulence model, implicit multi grid coupling algorithm and all structured grids. The effect of blade tip clearance on the hydrodynamic performance of waterjet propulsion was analyzed, and the relationship between the influence degrees of blade tip clearance and waterjet type was researched. Analysis result indicates that the head and efficiency of two types of pumps both decrease with the increase of blade tip clearance. The power consumption of mixed-flow waterjet pump first increases and then decreases with the increase of blade tip clearance. When the blade tip clearance is 1.3 mm, the power consumption is maximum. But the consumption of axial-flow waterjet pump monotonously decreases. The pump efficiency change due to the change of blade tip clearance of mixed-flow waterjet pump is not affected by mass flow, while that of axial-flow pump increases with the increase of mass flow. When the larger blade tip clearance isused as the reference, the same variation of blade tip clearance makes the efficiency of mixed-flow pump change larger, while the efficiency of axial-flow pump is opposite. The main reason resulting in the hydrodynamic difference between mixed-flow and axial-flow waterjet pumps is the different tip vortex effects on tip clearance leakage flow caused by the structure geometry. When the blade tip clearance increases from 0.7 mm to 1.6 mm, the thrust efficiencies of two types of waterjet propulsions change within 1%. When the blade tip clearance increases, the power consumptions of two types of waterjets show the same trend with waterjet pumps. The total thrust and power of axial-flow waterjet change larger than the values of mixed-flow waterjet, which means the mixed-flow waterjet is more adaptable to the change of blade tip clearance than axial-flow waterjet.
-
表 1 工况说明
Table 1. Condition illustration
-
[1] GOTO A. Study of internal flows in a mixed-flow pump impeller at various tip clearances using three-dimensional viscous flow computations[J]. Journal of Turbomachinery, 1992, 114 (2): 373-382. doi: 10.1115/1.2929154 [2] 施卫东, 张华, 陈斌, 等. 不同叶顶间隙下的轴流泵内部流场数值计算[J]. 排灌机械工程学报, 2010, 28 (5): 374-377, 406. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201005003.htmSHI Wei-dong, ZHANG Hua, CHEN Bin, et al. Numerical simulation of internal flow field in axial-flow pump with different blade tip clearance sizes[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28 (5): 374-377, 406. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201005003.htm [3] 施卫东, 李通通, 张德胜, 等. 不同叶顶间隙对轴流泵空化性能及流场的影响[J]. 华中科技大学学报: 自然科学版, 2013, 41 (4): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201304006.htmSHI Wei-dong, LI Tong-tong, ZHANG De-sheng, et al. Effect of tip clearance on the cavitation and flow field of axial flow pumps[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2013, 41 (4): 21-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201304006.htm [4] ZHANG De-sheng, PAN Da-zhi, SHI Wei-dong, et al. Study on tip leakage vortex in an axial flow pump based on modified shear stress transportκ-ωturbulence model[J]. Thermal Science, 2013, 17 (5): 1551-1555. doi: 10.2298/TSCI1305551Z [5] 张德胜, 吴苏青, 施卫东, 等. 不同湍流模型在轴流泵叶顶泄漏涡模拟中的应用与验证[J]. 农业工程学报, 2013, 29 (13): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201313009.htmZHANG De-sheng, WU Su-qing, SHI Wei-dong, et al. Application and experiment of different turbulence models for simulating tip leakage vortex in axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (13): 46-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201313009.htm [6] 梁开洪, 张克危, 许丽. 轴流泵叶顶间隙流动的计算流体动力分析[J]. 华中科技大学学报: 自然科学版, 2004, 32 (9): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200409012.htmLIANG Kai-hong, ZHANG Ke-wei, XU Li. Analysis of the flow through the blade tip clearances of axial pumps by CFD[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2004, 32 (9): 36-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200409012.htm [7] 戴辰辰, 郭鹏程, 罗兴琦. 轴流泵端壁间隙流动特性的数值分析[J]. 流体机械, 2009, 37 (6): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX200906009.htmDAI Chen-chen, GUO Peng-cheng, LUO Xing-qi. Numerical analysis of tip clearance flow characteristic in axial flow pump[J]. Fluid Machinery, 2009, 37 (6): 32-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX200906009.htm [8] 王正明, 贾希诚, 王嘉炜. 不同间隙条件下的叶顶区流动[J]. 工程热物理学报, 2003, 24 (2): 228-230. doi: 10.3321/j.issn:0253-231X.2003.02.013WANG Zheng-ming, JIA Xi-cheng, WANG Jia-wei. The flow in blade tip region under different clearance conditions[J]. Journal of Engineering Thermophysics, 2003, 24 (2): 228-230. (in Chinese). doi: 10.3321/j.issn:0253-231X.2003.02.013 [9] 叶学民, 李鹏敏, 李春曦. 叶顶间隙对轴流式叶轮机械性能及噪声的影响研究进展[J]. 流体机械, 2014, 42 (3): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201403008.htmYE Xue-min, LI Peng-min, LI Chun-xi. Reviews on effects of tip clearance on the aerodynamic performance and acoustic noise of axial flow turbomachineries[J]. Fluid Machinery, 2014, 42 (3): 32-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201403008.htm [10] LI Wei, QIAO Wei-yang, XU Kai-fu, et al. Numerical simulation of tip clearance flow passive control in axial turbine[J]. Journal of Thermal Science, 2008, 17 (2): 147-155. [11] RAMESH R D, RAMAMURTHU S, GOVARHAN M. Study on the performance deterioration of mixed flow impeller due to change in tip clearance[J]. Journal of Thermal Science, 2013, 22 (6): 532-538. [12] SWAMY S M, PANNDURANGADU V, SHAMKUMAR J M. Effect of a tip clearance on the performance of a low speed centrifugal compressor[J]. International Journal of Mechanical Engineering and Technology, 2017, 8 (1): 178-188. [13] BING Hao, CAO Shu-liang, HE Cheng-lian, et al. Experimental study of the effect of blade tip clearance and blade angle error on the performance of mixed-flow pump[J]. Science China: Technological Sciences, 2013, 56 (2): 293-298. [14] YANG Chang-ming, CHEN Ci-chang, WANG Jin-nuo, et al. Three-dimensional viscous numerical simulation of tip clearance flow in axial-flow pump[J]. Journal of Thermal Science, 2003, 12 (3): 231-233. [15] WATANABE S, SEKI H, HIGASHI S, et al. Modeling of2-D leakage jet cavitation as a basic study of tip leakage vortex cavitation[J]. Journal of Fluids Engineering, 2001, 123 (1): 50-56. [16] SHERVANI-TABAR M T, SHERVANI-TABAR N. Movement of location of tip vortex cavitation along blade edge due to reduction of flow rate in an axial pump[J]. International Journal of Mechanical Aerospace Engineering, 2012, 6: 191-195. [17] LU Lin, PAN Guang, WEI Jing, et al. Numerical simulation of tip clearance impact on pumpjet propulsor[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8 (3): 219-227. [18] WU Hui-xuan, TAN D, MIORINI R L. Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade[J]. Experiments in Fluids, 2011, 51 (6): 1721-1737. [19] KIM M C, CHUN H H. Experimental investigation into the performance of the axial-flow-type waterjet according to the variation of impeller tip clearance[J]. Ocean Engineering, 2007, 34 (2): 275-283. [20] 彭云龙, 王永生, 靳栓宝. 轴流式喷水推进泵的三元设计[J]. 中南大学学报: 自然科学版, 2014, 45 (6): 1812-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201406009.htmPENG Yun-long, WANG Yong-sheng, JIN Shuan-bao. Three-dimensional inverse design method applied to waterjet axial-flow pump[J]. Journal of Central South University: Science and Technology, 2014, 45 (6): 1812-1818. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201406009.htm [21] 彭云龙, 王永生, 曹玉良, 等. 实尺度浸没式喷水推进泵设计参数选择与性能分析[J]. 船舶力学, 2016, 20 (8): 947-953. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201608003.htmPENG Yun-long, WANG Yong-sheng, CAO Yu-liang, et al, Full scale submerged waterjet pump parameters selection and numerical evaluation of propulsive performance[J]. Journal of Ship Mechanics, 2016, 20 (8): 947-953. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201608003.htm [22] 彭云龙, 王永生, 刘承江, 等. 机械式泵喷与IMP推进器的水力性能对比[J]. 哈尔滨工程大学学报, 2016, 37 (5): 684-689. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201605012.htmPENG Yun-long, WANG Yong-sheng, LIU Cheng-jiang, et al. Comparative analysis of the hydrodynamic performance of a mechanical pump-jet and an integrated motor pump-jet[J]. Journal of Harbin Engineering University, 2016, 37 (5): 684-689. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201605012.htm [23] 曾文德, 王永生, 刘承江. 喷水推进混流泵流体动力性能的CFD研究[J]. 中国舰船研究, 2009, 4 (4): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG200904004.htmZENG Wen-de, WANG Yong-sheng, LIU Cheng-jiang. Hydrodynamic performance of the jet propulsion mixed-flow pump by CFD simulation[J]. Chinese Journal of Ship Research, 2009, 4 (4): 18-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG200904004.htm [24] 刘承江, 王永生, 张志宏. 喷水推进器数值模拟所需流场控制体的研究[J]. 水动力研究与进展, 2008, 23 (5): 592-595. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200805018.htmLIU Cheng-jiang, WANG Yong-sheng, ZHANG Zhi-hong. Study on flow control volume in numerical simulation of waterjet propulsor[J]. Chinese Journal of Hydrodynamics, 2008, 23 (5): 592-595. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200805018.htm [25] 刘承江, 王永生, 张志宏, 等. 流场控制体对喷水推进器性能预报影响的研究[J]. 船舶力学, 2010, 14 (10): 1117-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201010006.htmLIU Cheng-jiang, WANG Yong-sheng, ZHANG Zhi-hong, et al. Research on effect of different flow control volume on waterjet performance prediction[J]. Journal of Ship Mechanics, 2010, 14 (10): 1117-1121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201010006.htm -