留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶顶间隙对喷水推进水力性能的影响

彭云龙 王永生 易文彬 刘承江

彭云龙, 王永生, 易文彬, 刘承江. 叶顶间隙对喷水推进水力性能的影响[J]. 交通运输工程学报, 2018, 18(4): 120-131. doi: 10.19818/j.cnki.1671-1637.2018.04.013
引用本文: 彭云龙, 王永生, 易文彬, 刘承江. 叶顶间隙对喷水推进水力性能的影响[J]. 交通运输工程学报, 2018, 18(4): 120-131. doi: 10.19818/j.cnki.1671-1637.2018.04.013
PENG Yun-long, WANG Yong-sheng, YI Wen-bin, LIU Cheng-jiang. Effect of blade tip clearance on waterjet propulsion hydrodynamic performance[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 120-131. doi: 10.19818/j.cnki.1671-1637.2018.04.013
Citation: PENG Yun-long, WANG Yong-sheng, YI Wen-bin, LIU Cheng-jiang. Effect of blade tip clearance on waterjet propulsion hydrodynamic performance[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 120-131. doi: 10.19818/j.cnki.1671-1637.2018.04.013

叶顶间隙对喷水推进水力性能的影响

doi: 10.19818/j.cnki.1671-1637.2018.04.013
基金项目: 

国家自然科学基金项目 51209212

详细信息
    作者简介:

    彭云龙(1989-), 男, 河北邯郸人, 海军工程大学工学博士研究生, 从事喷水推进器设计与性能研究

    王永生(1955-), 男, 浙江富阳人, 海军工程大学教授, 工学博士

  • 中图分类号: U664.34

Effect of blade tip clearance on waterjet propulsion hydrodynamic performance

More Information
Article Text (Baidu Translation)
  • 摘要: 分别以设计参数相同的混流式喷水推进泵与轴流式喷水推进泵为对象, 基于剪切应力运输湍流模型、隐式多网格耦合算法与全结构化网格, 对4种不同叶顶间隙的水力性能进行数值模拟, 分析了叶顶间隙对喷水推进水力性能的影响, 研究了叶顶间隙影响程度与喷水推进器类型的关系。研究结果表明: 2种喷水推进泵的扬程、效率均随叶顶间隙增大而减小; 随着叶顶间隙的增大, 混流泵消耗功率先增大后减小, 当叶顶间隙为1.3mm时消耗功率最大, 而轴流泵消耗功率单调减小; 混流泵叶顶间隙变化引起的喷泵效率改变量不受流量影响, 而轴流泵效率变化量随流量增大而增大, 以较大叶顶间隙为基准, 且叶顶间隙变化量相同时, 混流泵效率变化较大, 轴流泵效率变化较小; 混流泵与轴流泵性能存在差异的主要原因是外形结构不同导致间隙涡对叶顶间隙泄流的作用大小不同; 当叶顶间隙由0.7mm增大至1.6mm时, 2种喷水推进器推力效率变化量在1%以内; 随着叶顶间隙的增大, 2种喷水推进器消耗功率的变化趋势与喷水推进泵相同, 且轴流式喷水推进器总推力、功率变化幅值大于混流式, 即混流式喷水推进器对叶顶间隙变化的适应性更好。

     

  • 图  1  某喷水推进泵计算域

    Figure  1.  Computational domain of a waterjet pump

    图  2  功率计算值与实测数据对比

    Figure  2.  Comparison between calculated and test powers

    图  3  混流泵轴面尺寸与三维几何模型

    Figure  3.  Axial plane dimensions and 3Dgeometry model of mixed-flow pump

    图  4  轴流泵轴面尺寸与三维几何模型

    Figure  4.  Axial plane dimensions and 3Dgeometry model of axial-flow pump

    图  5  混流泵网格无关性验证曲线

    Figure  5.  Curves of mixed-flow pump for mesh independence verification

    图  6  轴流泵网格无关性验证曲线

    Figure  6.  Curves of axial-flow pump for mesh independence verification

    图  7  混流泵整体网格

    Figure  7.  Overall mesh of mixed-flow pump

    图  8  混流泵内流场表面y+分布

    Figure  8.  y+distribution on flow field surface of mixed-flow pump

    图  9  轴流泵整体网格

    Figure  9.  Overall mesh of axial-flow pump

    图  10  轴流泵内流场表面y+分布

    Figure  10.  y+distribution on flow field surface of axial-flow pump

    图  11  混流泵效率对比曲线

    Figure  11.  Comparison curves of mixed-flow pump efficiency

    图  12  混流泵扬程系数对比曲线

    Figure  12.  Comparison curves of mixed-flow pump head coefficient

    图  13  混流泵功率对比曲线

    Figure  13.  Comparison curves of mixed-flow pump power

    图  14  剖面分布

    Figure  14.  Profile distribution

    图  15  混流泵截面P1处涡量分布

    Figure  15.  Vorticity distributions of mixed-flow pump section P1

    图  16  混流泵截面P2处涡量分布

    Figure  16.  Vorticity distributions of mixed-flow pump section P2

    图  17  混流泵截面P3处涡量分布

    Figure  17.  Vorticity distributions of mixed-flow pump section P3

    图  18  混流泵截面P4处涡量分布

    Figure  18.  Vorticity distributions of mixed-flow pump section P4

    图  19  混流泵99%叶片半径表面压力分布

    Figure  19.  Pressure distributions at 99%span radius of mixed-flow pump blade

    图  20  混流泵Δη曲线

    Figure  20.  Δηcurves of mixed-flow pump

    图  21  轴流泵效率对比曲线

    Figure  21.  Comparison curves of axial-flow pump efficiency

    图  22  轴流泵扬程系数对比曲线

    Figure  22.  Comparison curves of axial-flow pump head coefficient

    图  23  轴流泵功率对比曲线

    Figure  23.  Comparison curves of axial-flow pump power

    图  24  轴流泵截面P1处涡量分布

    Figure  24.  Vorticity distributions of axial-flow pump section P1

    图  25  轴流泵截面P2处涡量分布

    Figure  25.  Vorticity distributions of axial-flow pump section P2

    图  26  轴流泵截面P3处涡量分布

    Figure  26.  Vorticity distributions of axial-flow pump section P3

    图  27  轴流泵截面P4处涡量分布

    Figure  27.  Vorticity distributions of axial-flow pump section P4

    图  28  轴流泵Δη曲线

    Figure  28.  Δη curves of axial-flow pump

    图  29  混流式喷水推进器几何模型

    Figure  29.  Geometry model of mixed-flow waterjet propulsion

    图  30  轴流式喷水推进器几何模型

    Figure  30.  Geometry model of axial-flow waterjet propulsion

    图  31  喷水推进器数值模拟计算域

    Figure  31.  Numerical simulation computational domain of waterjet propulsion

    图  32  进水流道与平板船底网格

    Figure  32.  Meshes around inlet duct and flat bottom of ship

    图  33  两种喷水推进器流量对比曲线

    Figure  33.  Comparison curves of mass flow of 2 waterjets propulsions

    图  34  两种喷水推进器扬程对比曲线

    Figure  34.  Comparison curves of head of 2 waterjet propulsions

    图  35  两种喷水推进器功率对比曲线

    Figure  35.  Comparison curves of power of 2waterjet propulsions

    图  36  两种喷水推进器的泵效率对比曲线

    Figure  36.  Comparison curves of pump efficiency of2waterjet propulsions

    图  37  两种喷水推进器总推力对比曲线

    Figure  37.  Comparison curves of total thrust of2waterjet propulsions

    图  38  两种喷水推进器进水流道推力对比曲线

    Figure  38.  Comparison curves of inlet duct thrust of2waterjet propulsions

    图  39  两种喷水推进器喷口出流轴向分量对比曲线

    Figure  39.  Comparison curves of nozzle outflow axial component of 2waterjet propulsions

    图  40  两种喷水推进器推力效率对比曲线

    Figure  40.  Comparison curves of thrust efficiency of2waterjet propulsions

    表  1  工况说明

    Table  1.   Condition illustration

    下载: 导出CSV
  • [1] GOTO A. Study of internal flows in a mixed-flow pump impeller at various tip clearances using three-dimensional viscous flow computations[J]. Journal of Turbomachinery, 1992, 114 (2): 373-382. doi: 10.1115/1.2929154
    [2] 施卫东, 张华, 陈斌, 等. 不同叶顶间隙下的轴流泵内部流场数值计算[J]. 排灌机械工程学报, 2010, 28 (5): 374-377, 406. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201005003.htm

    SHI Wei-dong, ZHANG Hua, CHEN Bin, et al. Numerical simulation of internal flow field in axial-flow pump with different blade tip clearance sizes[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28 (5): 374-377, 406. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201005003.htm
    [3] 施卫东, 李通通, 张德胜, 等. 不同叶顶间隙对轴流泵空化性能及流场的影响[J]. 华中科技大学学报: 自然科学版, 2013, 41 (4): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201304006.htm

    SHI Wei-dong, LI Tong-tong, ZHANG De-sheng, et al. Effect of tip clearance on the cavitation and flow field of axial flow pumps[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2013, 41 (4): 21-25. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201304006.htm
    [4] ZHANG De-sheng, PAN Da-zhi, SHI Wei-dong, et al. Study on tip leakage vortex in an axial flow pump based on modified shear stress transportκ-ωturbulence model[J]. Thermal Science, 2013, 17 (5): 1551-1555. doi: 10.2298/TSCI1305551Z
    [5] 张德胜, 吴苏青, 施卫东, 等. 不同湍流模型在轴流泵叶顶泄漏涡模拟中的应用与验证[J]. 农业工程学报, 2013, 29 (13): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201313009.htm

    ZHANG De-sheng, WU Su-qing, SHI Wei-dong, et al. Application and experiment of different turbulence models for simulating tip leakage vortex in axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29 (13): 46-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201313009.htm
    [6] 梁开洪, 张克危, 许丽. 轴流泵叶顶间隙流动的计算流体动力分析[J]. 华中科技大学学报: 自然科学版, 2004, 32 (9): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200409012.htm

    LIANG Kai-hong, ZHANG Ke-wei, XU Li. Analysis of the flow through the blade tip clearances of axial pumps by CFD[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2004, 32 (9): 36-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200409012.htm
    [7] 戴辰辰, 郭鹏程, 罗兴琦. 轴流泵端壁间隙流动特性的数值分析[J]. 流体机械, 2009, 37 (6): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX200906009.htm

    DAI Chen-chen, GUO Peng-cheng, LUO Xing-qi. Numerical analysis of tip clearance flow characteristic in axial flow pump[J]. Fluid Machinery, 2009, 37 (6): 32-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX200906009.htm
    [8] 王正明, 贾希诚, 王嘉炜. 不同间隙条件下的叶顶区流动[J]. 工程热物理学报, 2003, 24 (2): 228-230. doi: 10.3321/j.issn:0253-231X.2003.02.013

    WANG Zheng-ming, JIA Xi-cheng, WANG Jia-wei. The flow in blade tip region under different clearance conditions[J]. Journal of Engineering Thermophysics, 2003, 24 (2): 228-230. (in Chinese). doi: 10.3321/j.issn:0253-231X.2003.02.013
    [9] 叶学民, 李鹏敏, 李春曦. 叶顶间隙对轴流式叶轮机械性能及噪声的影响研究进展[J]. 流体机械, 2014, 42 (3): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201403008.htm

    YE Xue-min, LI Peng-min, LI Chun-xi. Reviews on effects of tip clearance on the aerodynamic performance and acoustic noise of axial flow turbomachineries[J]. Fluid Machinery, 2014, 42 (3): 32-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTJX201403008.htm
    [10] LI Wei, QIAO Wei-yang, XU Kai-fu, et al. Numerical simulation of tip clearance flow passive control in axial turbine[J]. Journal of Thermal Science, 2008, 17 (2): 147-155.
    [11] RAMESH R D, RAMAMURTHU S, GOVARHAN M. Study on the performance deterioration of mixed flow impeller due to change in tip clearance[J]. Journal of Thermal Science, 2013, 22 (6): 532-538.
    [12] SWAMY S M, PANNDURANGADU V, SHAMKUMAR J M. Effect of a tip clearance on the performance of a low speed centrifugal compressor[J]. International Journal of Mechanical Engineering and Technology, 2017, 8 (1): 178-188.
    [13] BING Hao, CAO Shu-liang, HE Cheng-lian, et al. Experimental study of the effect of blade tip clearance and blade angle error on the performance of mixed-flow pump[J]. Science China: Technological Sciences, 2013, 56 (2): 293-298.
    [14] YANG Chang-ming, CHEN Ci-chang, WANG Jin-nuo, et al. Three-dimensional viscous numerical simulation of tip clearance flow in axial-flow pump[J]. Journal of Thermal Science, 2003, 12 (3): 231-233.
    [15] WATANABE S, SEKI H, HIGASHI S, et al. Modeling of2-D leakage jet cavitation as a basic study of tip leakage vortex cavitation[J]. Journal of Fluids Engineering, 2001, 123 (1): 50-56.
    [16] SHERVANI-TABAR M T, SHERVANI-TABAR N. Movement of location of tip vortex cavitation along blade edge due to reduction of flow rate in an axial pump[J]. International Journal of Mechanical Aerospace Engineering, 2012, 6: 191-195.
    [17] LU Lin, PAN Guang, WEI Jing, et al. Numerical simulation of tip clearance impact on pumpjet propulsor[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8 (3): 219-227.
    [18] WU Hui-xuan, TAN D, MIORINI R L. Three-dimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade[J]. Experiments in Fluids, 2011, 51 (6): 1721-1737.
    [19] KIM M C, CHUN H H. Experimental investigation into the performance of the axial-flow-type waterjet according to the variation of impeller tip clearance[J]. Ocean Engineering, 2007, 34 (2): 275-283.
    [20] 彭云龙, 王永生, 靳栓宝. 轴流式喷水推进泵的三元设计[J]. 中南大学学报: 自然科学版, 2014, 45 (6): 1812-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201406009.htm

    PENG Yun-long, WANG Yong-sheng, JIN Shuan-bao. Three-dimensional inverse design method applied to waterjet axial-flow pump[J]. Journal of Central South University: Science and Technology, 2014, 45 (6): 1812-1818. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201406009.htm
    [21] 彭云龙, 王永生, 曹玉良, 等. 实尺度浸没式喷水推进泵设计参数选择与性能分析[J]. 船舶力学, 2016, 20 (8): 947-953. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201608003.htm

    PENG Yun-long, WANG Yong-sheng, CAO Yu-liang, et al, Full scale submerged waterjet pump parameters selection and numerical evaluation of propulsive performance[J]. Journal of Ship Mechanics, 2016, 20 (8): 947-953. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201608003.htm
    [22] 彭云龙, 王永生, 刘承江, 等. 机械式泵喷与IMP推进器的水力性能对比[J]. 哈尔滨工程大学学报, 2016, 37 (5): 684-689. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201605012.htm

    PENG Yun-long, WANG Yong-sheng, LIU Cheng-jiang, et al. Comparative analysis of the hydrodynamic performance of a mechanical pump-jet and an integrated motor pump-jet[J]. Journal of Harbin Engineering University, 2016, 37 (5): 684-689. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201605012.htm
    [23] 曾文德, 王永生, 刘承江. 喷水推进混流泵流体动力性能的CFD研究[J]. 中国舰船研究, 2009, 4 (4): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG200904004.htm

    ZENG Wen-de, WANG Yong-sheng, LIU Cheng-jiang. Hydrodynamic performance of the jet propulsion mixed-flow pump by CFD simulation[J]. Chinese Journal of Ship Research, 2009, 4 (4): 18-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG200904004.htm
    [24] 刘承江, 王永生, 张志宏. 喷水推进器数值模拟所需流场控制体的研究[J]. 水动力研究与进展, 2008, 23 (5): 592-595. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200805018.htm

    LIU Cheng-jiang, WANG Yong-sheng, ZHANG Zhi-hong. Study on flow control volume in numerical simulation of waterjet propulsor[J]. Chinese Journal of Hydrodynamics, 2008, 23 (5): 592-595. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200805018.htm
    [25] 刘承江, 王永生, 张志宏, 等. 流场控制体对喷水推进器性能预报影响的研究[J]. 船舶力学, 2010, 14 (10): 1117-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201010006.htm

    LIU Cheng-jiang, WANG Yong-sheng, ZHANG Zhi-hong, et al. Research on effect of different flow control volume on waterjet performance prediction[J]. Journal of Ship Mechanics, 2010, 14 (10): 1117-1121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201010006.htm
  • 加载中
图(40) / 表(1)
计量
  • 文章访问数:  783
  • HTML全文浏览量:  221
  • PDF下载量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-16
  • 刊出日期:  2018-08-25

目录

    /

    返回文章
    返回