Analysis of relavent factors for highway freight volume and freight turnover based on grey entropy method
-
摘要: 分析了国民经济宏观因素与公路货运量和货物周转量之间的相互影响, 提出了基于灰色关联度算法与熵权法相结合的灰熵关联度算法, 依据《陕西统计年鉴》中近14年的经济数据与公路货运量和货物周转量数据, 研究了国民经济宏观因素与公路货运量和货物周转量之间的关联系数, 给出了各个经济指标对公路货运量和货物周转量的影响程度; 去除各数据之间量纲的影响, 用灰色关联度算法计算经济指标与公路货运量和货物周转量之间的关联系数, 用熵权法计算各经济指标的权重; 基于经济指标的关联系数及其权重, 计算了各个经济指标与公路货运量和货物周转量之间的关联度, 并分析了北京市和天津市公路货运量的影响因素。分析结果表明: 对于经济指标, 公路货运量和货物周转量呈现相似的关联趋势, 陕西省公路货运量与第一产业产值、工业增加值、第二产业产值之间的关联度较高, 分别为0.944 7、0.941 7、0.940 2, 货物周转量与第一产业产值、城镇单位在岗职工平均工资、人均生产总值的关联度较高, 分别为0.920 7、0.915 9、0.915 3;北京市公路货运量与第三产业指数、第二产业指数、人均生产总值指数的关联度较高, 分别为0.716 2、0.714 8、0.710 9;天津市公路货运量与城镇单位在岗职工平均工资、生产总值、第三产业产值、第二产业产值、工业增加值、人均生产总值的关联度较高, 分别为0.862 0、0.855 6、0.853 4、0.851 4、0.851 4、0.851 3。可见: 北京市与天津市公路货运量关联因素分析结果总体上同陕西省基本一致, 主要关联因素都是该地区三大产业产值。Abstract: The interaction effects between the national macro-economic factors and highway freight volume and freight turnover were analyzed. A grey entropy relational degree algorithm based on the grey relational degree algorithm and the entropy weight method was proposed. According to the economic data and highway freight volume and freight turnover data of Shaanxi Statistical Yearbookin the past 14 years, the relevant coefficients between the national macroeconomic factors and highway freight volume and freight turnover were studied, and the influencedegree of each economic indicator on highway freight volume and freight turnover was obtained. By removing the dimensional effect between the data, the relevant coefficients between the economic indicators and highway freight volume and freight turnover were calculated by the grey relational degree algorithm, and the weights of the economic indicators were calculated using the entropy weight method. The relevant degrees between the economic indicators and highway freight volume and freight turnover were calculated based on the relevant coefficients of the economic indicators and their weights. Moreover, the influencing factors of the highway freight volumes in Beijing and Tianjin were analyzed. Analysis result shows that for the economic indicators, the highway freight volume and freight turnover show similar relevant trends. In Shaanxi Province, the relational degrees between the highway freight volume and output value of the primary industry, added value of the industry and output value of the secondary industry are relatively higher, and are 0.944 7, 0.941 7, and 0.940 2, respectively. The relational degrees between the freight turnover and output value of the primary industry, average salary of the onjob employees in the urban units, and per capita GDP are higher, and are 0.920 7, 0.915 9, and 0.915 3, respectively. In Beijing, the relational degrees between the highway freight volume and tertiary industry index, secondary industry index, and per capita GDP index are higher, and are 0.716 2, 0.714 8, and 0.710 9, respectively. In Tianjin, the relational degrees between the highway freight volume and average salary of on-job employees in urban units, GDP, tertiary industry output value, secondary industry output value, industrial added value, and per capita GDP are higher, and are 0.862 0, 0.855 6, 0.853 4, 0.851 4, 0.851 4, and 0.851 3, respectively. In conclusion, the analysis results of the relevant factors of the highway freight volumes in Beijing and Tianjin are generally consistent with those in Shaanxi Province, and the main relevant factors are the output values of the three major industries in these regions.
-
表 1 公路货运量与货物周传量
Table 1. Highway freight volumes and freight turnovers
表 2 经济指标
Table 2. Economic indicators
-
[1] 李楠. 区域交通信息集成与运输需求预测研究[D]. 大连: 大连海事大学 , 2011.LI Nan. Study on information and transportation demand prediction of regional traffic[D]. Dalian: Dalian Maritime University, 2011. (in Chinese). [2] 崔淑华, 王娜, 胡亚南. 基于主成分分析的公路货运量预测影响因素研究[J]. 森林工程, 2005, 21 (5): 65-67. doi: 10.3969/j.issn.1001-005X.2005.05.025CUI Shu-hua, WANG Na, HU Ya-nan. Influencing factors of forecasting highway freight volume based on principal components analysis[J]. Forest Engineering, 2005, 21 (5): 65-67. (in Chinese). doi: 10.3969/j.issn.1001-005X.2005.05.025 [3] 程成. 东三省区域货运量影响因素筛选及预测研究[D]. 长春: 吉林大学, 2013CHENG Cheng. Research on the Three Northeastern Provinces regional freight volume influencing factors screening and forecast[D]. Changchun: Jilin University, 2013. (in Chinese) [4] 李瑞, 代明睿, 李凤姿. 基于灰色关联度的铁路货运量关键影响因子选取方法研究[J]. 铁道货运, 2015 (11): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TDHY201511003.htmLI Rui, DAI Ming-rui, LI Feng-zi. Study on selection methods of key influence factors of railway freight transport volume based on grey correlation[J]. Railway Freight Transport, 2015 (11): 11-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDHY201511003.htm [5] 杨婷. 基于加权组合模型的云南省公路货运量预测研究[D]. 重庆: 重庆交通大学, 2016.YANG Ting. Research on highway freight volume forecast in Yunnan Province based on weighted combination model[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese). [6] 曾春. 区域公路货物运输量统计方法研究[D]. 北京: 北京交通大学, 2009.ZENG Chun. Study on the method of survey and statistics of freight transport burden by regional highway traffic[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese). [7] 张岄. 铁路货运量预测及影响因素研究[D]. 北京: 北京交通大学, 2016.ZHANG Yue. Prediction and factors analysis of railway freight volumes[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese). [8] 许乃星, 蒲之艳, 张静晶, 等. 公路交通与经济发展适应性评价研究[J]. 交通运输工程与信息学报, 2011, 9 (3): 79-86. doi: 10.3969/j.issn.1672-4747.2011.03.016XU Nai-xing, PU Zhi-yan, ZHANG Jing-jing, et al. Adaptability evaluation for highway transportation and economic development[J]. Journal of Transportation Engineering and Information, 2011, 9 (3): 79-86. (in Chinese). doi: 10.3969/j.issn.1672-4747.2011.03.016 [9] 刘文颖, 门德月, 梁纪峰, 等. 基于灰色关联度与LSSVM组合的月度负荷预测[J]. 电网技术, 2012, 36 (8): 228-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201208040.htmLIU Wen-ying, MEN De-yue, LIANG Ji-feng, et al. Monthly load forecasting based on grey relational degree and least squares support vector machine[J]. Power System Technology, 2012, 36 (8): 228-232. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201208040.htm [10] 詹斌, 吕腊梅, 黄馨. 基于熵权法的公路货运量组合预测[J]. 物流技术, 2016, 35 (6): 54-57, 74. doi: 10.3969/j.issn.1005-152X.2016.06.013ZHAN Bin, LYU La-mei, HUANG Xin. Combination forecasting of highway freight volume based on entropy weighting[J]. Logistics Technology, 2016, 35 (6): 54-57, 74. (in Chinese). doi: 10.3969/j.issn.1005-152X.2016.06.013 [11] 邓聚龙. 灰色控制系统[J]. 华中科技大学学报: 自然科学版, 1982, 10 (3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200905017.htmDENG Ju-long. The grey control system[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 1982, 10 (3): 9-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB200905017.htm [12] 邓聚龙. 粮食的灰色模糊预测与控制[J]. 华中科技大学学报: 自然科学版, 1983, 11 (2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG198302000.htmDENG Ju-long. Grey fuzzy forecast and control for grain[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 1983, 11 (2): 1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG198302000.htm [13] 张岐山, 郭喜江, 邓聚龙. 灰关联熵分析方法[J]. 系统工程理论与实践, 1996 (8): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL608.001.htmZHANG Qi-shan, GUO Xi-jiang, DENG Ju-long. Grey relation entropy method of grey relation analysis[J]. Systems Engineering: Theory and Practice, 1996 (8): 7-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL608.001.htm [14] CHANG Yen-ching, CHANG Chun-ming, CHEN Liang-hwa, et al. Evaluating image quality using consistent grey relational grade[J]. Engineering Computations, 2014, 31 (2): 231-249. doi: 10.1108/EC-01-2013-0016 [15] 崔明建, 孙元章, 杨军, 等. 一种基于多层次灰色面积关联分析的电网安全综合评价模型[J]. 电网技术, 2013, 37 (12): 3453-3460. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201312024.htmCUI Ming-jian, SUN Yuan-zhang, YANG Jun, et al. Power grid security comprehensive assessment based on multi-level grey area relational analysis[J]. Power System Technology, 2013, 37 (12): 3453-3460. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201312024.htm [16] NI C C. Grey relational grade analysis between Vickers hardness and fatigue crack growth data of 2024-T351aluminum alloy[J]. Advanced Materials Research, 2012, 476-478: 2435-2439. doi: 10.4028/www.scientific.net/AMR.476-478.2435 [17] TIAN Guang-dong, ZHANG Hong-hao, ZHOU Meng-chu, et al. AHP, gray correlation, and TOPSIS combined approach to green performance evaluation of design alternatives[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48 (7): 1093-1105. [18] ZHANG Ke, YE Wei, ZHAO Li-ping. The absolute degree of grey incidence for grey sequence base on standard grey interval number operation[J]. Kybernetes, 2012, 41 (7/8): 934-944. [19] XIAO Xiao-cong, WANG Xiang-qun, FU Kai-yao, et al. Grey relational analysis on factors of the quality of web service[J]. Physics Procedia, 2012, 33: 1992-1998. doi: 10.1016/j.phpro.2012.05.313 [20] LEE Wen-shing, LIN Yeong-chuan. Evaluating and ranking energy performance of office buildings using grey relational analysis[J]. Energy, 2011, 36 (5): 2551-2556. [21] 姜德义, 彭辉华, 赵丽君, 等. 熵权集对分析法在盐岩储气库稳定性评价中的应用[J]. 东北大学学报: 自然科学版, 2018, 38 (2): 284-289. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201702031.htmJIANG De-yi, PENG Hui-hua, ZHAO Li-jun, et al. Application of set pair analysis method based on entropy weight to the stability evaluation of salt rock gas storage[J]. Journal of Northeastern University: Natural Science, 2018, 38 (2): 284-289. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201702031.htm [22] WANG Xi-dong, YANG Shao-chun, ZHAO Yong-fu, et al. Lithology identification using an optimized KNN clustering method based on entropy-weighed cosine distance in Mesozoic strata of Gaoqing field, Jiyang depression[J]. Journal of Petroleum Science and Engineering, 2018, 166: 157-174. [23] 王学军, 郭亚军, 赵礼强. 一种动态组合评价方法及其在供应商选择中的应用[J]. 管理评论, 2005, 17 (12): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD200512008.htmWANG Xue-jun, GUO Ya-jun, ZHAO Li-qiang. The method of dynamic constitution evaluation and its application in supplier selection[J]. Management Review, 2005, 17 (12): 40-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZWGD200512008.htm [24] 何瑜萍, 乔金友. 基于信息熵的轿车选型模型及应用[J]. 数学的实践与认识, 2011, 41 (10): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201110009.htmHE Yu-ping, QIAO Jin-you. Car selection model and application based on information entropy method[J]. Mathematics in Practice and Theory, 2011, 41 (10): 51-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201110009.htm [25] 赵萌, 任嵘嵘, 邱菀华. 基于直觉模糊熵的专家权重确定方法及其验证[J]. 控制与决策, 2015, 30 (7): 1233-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201507012.htmZHAO Meng, REN Rong-rong, QIU Wan-hua. Experts'weights method and computational experiment analysis based on intuitionistic fuzzy entropy measures[J]. Control and Decision, 2015, 30 (7): 1233-1238. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201507012.htm [26] WEN Kun-li. The proof of a new modified grey relational grade[J]. Grey Systems: Theory and Application, 2016, 6 (2): 180-186. [27] WEN Kun-li. The quantized transformation in Deng's grey relational grade[J]. Grey Systems: Theory and Application, 2016, 6 (3): 375-397. [28] KUNG Chaang-yung, WEN Kun-li. Applying grey relational analysis and grey decision-making to evaluate the relationship between company attributes and its financial performance—a case study of venture capital enterprises in Taiwan[J]. Decision Support Systems, 2007, 43 (3): 842-852. [29] YIN Ya-juan, REN Qing-wen. Studying the representative volume of concrete using the entropy weight-grey correlation model[J]. Magazine of Concrete Research, 2018, 70 (15): 757-769. [30] 罗毅, 李昱龙. 基于熵权法和灰色关联分析法的输电网规划方案综合决策[J]. 电网技术, 2013, 37 (1): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201301013.htmLUO Yi, LI Yu-long. Comprehensive decision-making of transmission network planning based on entropy weight and grey relational analysis[J]. Power System Technology, 2013, 37 (1): 77-81. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201301013.htm [31] 高明, 吴雪萍. 基于熵权灰色关联法的北京空气质量影响因素分析[J]. 生态经济, 2017, 33 (3): 142-147. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201703029.htmGAO Ming, WU Xue-ping. Air quality and its influencing factors in Beijing based on entropy-weighted grey correlation model[J]. Ecological Economy, 2017, 33 (3): 142-147. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201703029.htm [32] 任元超, 郑建新, 段玉涛. 灰色关联改进TOPSIS的二维超声挤压表面质量研究[J]. 表面技术, 2018, 47 (3): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201803021.htmREN Yuan-chao, ZHENG Jian-xin, DUAN Yu-tao. Surface quality in two-dimensional ultrasonic extrusion process with TOPSIS improved by gray relational analysis[J]. Surface Technology, 2018, 47 (3): 121-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201803021.htm [33] PENG Xin-dong, DAI Jing-guo. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function[J]. Neural Computing and Applications, 2018, 29 (10): 939-954. -