Influence of unbalanced pavement friction on landing taxiing parameters of aircraft
-
摘要: 从运动学原理入手建立飞机着陆滑行力学模型, 引入道面摩阻不平衡度, 基于实测道面摩擦因数及其摩阻不平衡度分析飞机着陆减速和匀速滑行阶段的偏航角与偏航距离的变化趋势, 并设计模型试验分析湿滑道面摩阻不平衡下飞机着陆滑行参数变化规律。研究结果表明: 当跑道中心线两侧摩阻不平衡时, 机体产生绕竖轴扭矩, 导致飞机产生偏航角和偏航距离; 摩阻不平衡度的增大导致飞机偏航角与偏航距离增大, 摩阻不平衡度由0.03增加到0.38时, 偏航角增大4倍, 偏航距离增大1倍; 减小中心线两侧的摩阻不平衡度可以有效降低飞机偏出跑道概率; 滑移率对偏航角和偏航距离影响较小; 道面摩擦因数降低, 减速滑行距离增大, 基本呈线性变化; 随着跑道接地带摩阻不平衡度增大, 飞机所产生的偏航角呈直线增长, 当摩阻不平衡度达0.165时, 偏航角达1.2°; 随着跑道接地带摩阻不平衡度增大, 偏航距离也增大, 由于减速段所产生的偏航角, 加之匀速段滑行距离较长, 70%以上的偏航距离是在匀速阶段发生的; 湿滑道面下随着中心线两侧的水膜厚度差增大, 偏航角和偏航距离均增大, 水膜厚度差从0.05mm增加到2.50mm, 偏航角增大6倍, 偏航距离增大5倍。可见, 在接地带保证飞机主起落架两侧摩阻平衡, 有利于着陆减速过程飞机偏航角的控制。Abstract: A mechanical model of aircraft landing taxiing was established based on the kinematics principle, and the unbalanced pavement friction degree was introduced.On the basis of the in-situ measured pavement friction coefficient and unbalanced friction degree, the variation tendencies of an aircraft's yaw angle and yaw distance during its landing deceleration and taxiing at constant speed were analyzed.The model tests were conducted, and the variation tendencies of landing taxiing parameters under unbalanced pavement friction of a wet runway were analyzed.Analysis result indicates that the unbalanced runway friction at two sides of a runway centerline leads to the aircraft turning around the vertical axis, which leads to the incurrence of yaw angle and yaw distance during aircraft landing taxiing.Increasing unbalanced pavement friction degree causes an increase in yaw angle and yaw distance during aircraft landing taxiing.When the unbalanced friction degree increases from 0.03 to 0.38, the yaw angle increases by 4 times, and the yawdistance increases by 1 time.Therefore, decreasing unbalanced friction degree at two sides of a runway centerline can effectively reduce the probability of an aircraft's runway deviation in landing taxiing.The slip ratio of tires on the aircraft has little influence on yaw angle and distance of the aircraft.When the pavement friction coefficient decreases, the taxiing distance of deceleration increases linearly.With the increase of unbalanced friction degree on the runway's landing strip, the yaw angle increases linearly.As the unbalanced friction degree reaches 0.165, the yaw angle is 1.2°.With the increases of unbalanced friction degree on the runway's landing strip, the yaw distance also increases.For the yaw angle occurring in deceleration taxiing and a long uniform velocity taxiing distance, above 70% yaw distance in landing taxiing occurrs in the uniform section.When the water film thickness difference on the two sides of wet runway center line increases, the yaw angle and yaw distance during the aircraft's landing taxiing increase as well, and as the water film thickness difference increases from 0.05 mm to 2.50 mm, the yaw angle increases by 6 times, and the yaw distance increases by 5 times.Therefore, the balance of friction at the position of the aircraft's main landing gear on the landing strip should be guaranteed, because it is beneficial to the yaw angle control during an aircraft's deceleration section.
-
Key words:
- airport pavement /
- landing taxiing /
- unbalanced friction /
- pavement friction coefficient /
- yaw angle /
- slip ratio /
- yaw distance /
- thickness of water
-
表 1 跑道中心线两侧道面条件
Table 1. Pavement conditions at two sides of runway
表 2 飞机着陆滑行参数
Table 2. Aircraft landing taxiing parameters
表 3 不同滑移率下的偏航角
Table 3. Yaw angles at different slip ratios
(°) 表 4 不同滑移率下的偏航距离
Table 4. Yaw distances at different slip ratios
m 表 5 干燥道面摩擦因数与摩阻不平衡度
Table 5. Friction coefficients and unbalanced friction degrees of dry pavement
表 6 积水道面摩擦因数与摩阻不平衡度
Table 6. Friction coefficients and unbalanced friction degrees of water pavement
表 7 积雪道面摩擦因数与摩阻不平衡度
Table 7. Friction coefficients and unbalanced friction degrees of snowy pavement
表 8 跑道X端减速段滑行参数
Table 8. Taxiing parameters at deceleration section of X end
表 9 跑道Y端减速段滑行参数
Table 9. Taxiing parameters at deceleration section of Y end
表 10 跑道X端匀速段滑行参数
Table 10. Taxiing parameters at uniform section of X end
表 11 跑道Y端匀速段滑行参数
Table 11. Taxiing parameters at uniform section of Y end
表 12 着陆滑行参数
Table 12. Parameters of landing taxiing
表 13 亚克力板摩擦因数
Table 13. Friction coefficients of acrylic plate
表 14 水膜厚度与摩阻不平衡度
Table 14. Water film thicknesses and unbalanced friction degrees
表 15 各工况下试验结果
Table 15. Test results under different conditions
表 16 各工况下试验结果(还原)
Table 16. Test results under different conditions (reduction)
表 17 试验结果对比
Table 17. Comparison of test results
-
[1] 赵安家, 孙丽莹, 孟哲理. 飞机轮胎滑水与预防措施研究综述[J]. 飞机设计, 2015, 35 (5): 46-51, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201505010.htmZHAO An-jia, SUN Li-ying, MENG Zhe-li. A search for mechanism and preventability measure of the aircraft tire'hydroplaning[J]. Aircraft Design, 2015, 35 (5): 46-51, 80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201505010.htm [2] 霍志勤, 茹毅, 韩松臣. 民航运输航空器着陆阶段偏出跑道事件分析模型[J]. 西南交通大学学报, 2012, 47 (5): 895-900. doi: 10.3969/j.issn.0258-2724.2012.05.026HUO Zhi-qin, RU Yi, HAN Song-chen. Analysis model of transport aircraft veering off runway during landing phase[J]. Journal of Southwest Jiaotong University, 2012, 47 (5): 895-900. (in Chinese). doi: 10.3969/j.issn.0258-2724.2012.05.026 [3] 陆正. 基于Bow-tie模型的民机着陆阶段跑道偏离风险研究[D]. 天津: 中国民航大学, 2015.LU Zheng. Civil aircraft landing excursion risk analysis based on bow-tie model[D]. Tianjin: Civil Aviation University of China, 2015. (in Chinese). [4] 张明. 飞机地面动力学若干关键技术研究[D]. 南京: 南京航空航天大学, 2009.ZHANG Ming. Research on some key technologies of aircraft ground dynamics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese). [5] 宗一鸣. 湿滑道面条件下轮胎力学行为与飞机着陆安全问题研究[D]. 天津: 中国民航大学, 2017.ZONG Yi-ming. Study on the mechanical properties of aircraft tire and safety problem in landing on wet-pavement[D]. Tianjin: Civil Aviation University of China, 2017. (in Chinese). [6] 蔡靖, 李岳, 宗一鸣, 等. 湿滑跑道飞机着陆轮胎-水膜-道面相互作用[J]. 北京航空航天大学学报, 2017, 43 (12): 2382-2391. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201712004.htmCAI Jing, LI Yue, ZONG Yi-ming, et al. Aircraft tire-water film-pavement interaction on wet pavement in landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (12): 2382-2391. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201712004.htm [7] 孙泽鹏. 多轮起落架飞机地面操作特性分析[D]. 南京: 南京航空航天大学, 2009.SUN Ze-peng. Analysis of ground handling characteristic of aircraft with multi-wheels landing gear[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese). [8] 晋萍. 基于ADAMS软件的飞机滑行动力响应仿真分析[J]. 机械工程与自动化, 2007 (2): 1-3. doi: 10.3969/j.issn.1672-6413.2007.02.001JIN Ping. Analysis on the aerodynamic response based on ADAMS[J]. Mechanical Engineering and Automation, 2007 (2): 1-3. (in Chinese). doi: 10.3969/j.issn.1672-6413.2007.02.001 [9] 董健康, 王洁宁, 王安国, 等. 飞机地面滑行行为计算方法[J]. 中国民航大学学报, 2012, 30 (6): 21-24, 33. doi: 10.3969/j.issn.1674-5590.2012.06.006DONG Jian-kang, WANG Jie-ning, WANG An-guo, et al. Aircraft ground taxiing behavior calculation method[J]. Journal of Civil Aviation University of China, 2012, 30 (6): 21-24, 33. (in Chinese). doi: 10.3969/j.issn.1674-5590.2012.06.006 [10] 张立彬, 苏胜昔. 关于飞机侧风着陆问题的分析[J]. 飞行力学, 2002, 20 (4): 51-55. doi: 10.3969/j.issn.1002-0853.2002.04.013ZHANG Li-bin, SU Sheng-xi. Analysis to the problem of airplane's cross-wind landing[J]. Flight Dynamics, 2002, 20 (4): 51-55. (in Chinese). doi: 10.3969/j.issn.1002-0853.2002.04.013 [11] HORNE W B. Wet runways[R]. Washington DC: National Aeronautics and Space Administration, 1975. [12] PASINDU H R, FWA T F, ONG G P. Computation of aircraft braking distances[J]. Transportation Research Record, 2011 (2214): 126-135. [13] KUMAR S S, ANUPAM K, SCARPAS T, et al. Study of hydroplaning risk on rolling and sliding passenger car[J]. Procedia—Social and Behavioral Sciences, 2012 (53): 1020-1028. [14] 杨军, 王昊鹏, 吴琦. 潮湿沥青路面抗滑性能数值模拟[J]. 长安大学学报: 自然科学版, 2016, 36 (3): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201603005.htmYANG Jun, WANG Hao-peng, WU Qi. Numerical simulation on skid resistance property of wet asphalt pavement[J]. Journal of Chang'an University: Natural Science Edition, 2016, 36 (3): 25-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201603005.htm [15] 陈久锐. 复杂条件下起飞着陆中的定量安全裕度研究[D]. 成都: 中国民用航空飞行学院, 2009.CHEN Jiu-rui. Research on safety margins during take off and landing phases under complicated conditions[D]. Chengdu: Civil Aviation Flight University of China, 2009. (in Chinese). [16] 赵鸿铎, 伍梦竹, 吴世涛. 沥青道面摩擦系数随水膜厚度的变化规律[J]. 中国民航大学学报, 2015, 33 (2): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201502011.htmZHAO Hong-duo, WU Meng-zhu, WU Shi-tao. Variation of asphalt pavement friction coefficient with change of water film thickness[J]. Journal of Civil Aviation University of China, 2015, 33 (2): 47-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201502011.htm [17] 臧孟炎, 段扶摇, 周涛, 等. 复杂花纹轮胎湿滑路面制动距离FEM仿真分析及评价[J]. 中国机械工程, 2013, 24 (16): 2257-2261. doi: 10.3969/j.issn.1004-132X.2013.16.024ZANG Meng-yan, DUAN Fu-yao, ZHOU Tao, et al. FEM simulation analysis and estimation on wet-road braking distance of complex-patterned tire[J]. China Mechanical Engineering, 2013, 24 (16): 2257-2261. (in Chinese). doi: 10.3969/j.issn.1004-132X.2013.16.024 [18] 吴华伟, 陈特放, 胡春凯, 等. 多轮飞机滑水保护[J]. 民用飞机设计与研究, 2011 (4): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201104020.htmWU Hua-wei, CHEN Te-fang, HU Chun-kai, et al. The hydroplaning protection of the multi-wheel aircraft[J]. Civil Aircraft Design and Research, 2011 (4): 62-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ201104020.htm [19] 牟丹. 四点起落架飞机着陆及操纵特性分析[D]. 南京: 南京航空航天大学, 2016.MU Dan. Analysis of landing and handling characteristic of aircraft with four wheels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese). [20] 陈高军. 湿滑路面子午线轮胎制动性能有限元仿真研究[D]. 广州: 华南理工大学, 2012.CHEN Gao-jun. Finite element investigation on wet-road braking performance of radial tire[D]. Guangzhou: South China University of Technology, 2012. (in Chinese). [21] 柯文豪. 潮湿路面滑水现象及抗滑力模型[J]. 中外公路, 2010, 30 (1): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201001023.htmKE Wen-hao. Hydroplaning phenomenon and anti sliding force model of wet pavement[J]. Journal of China and Foreign Highway, 2010, 30 (1): 82-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201001023.htm [22] HORNE W B, DREHER R C. Phenomena of pneumatic tire hydroplaning[R]. Washington DC: National Aeronautics and Space Administration, 1963. [23] 史保华, 李光远, 邵斌, 等. 沥青跑道抗滑性能分析[J]. 交通运输工程学报, 2007, 7 (5): 58-62. http://transport.chd.edu.cn/article/id/200705013SHI Bao-hua, LI Guang-yuan, SHAO Bin, et al. Anti-skid property analysis of asphalt runway[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (5): 58-62. (in Chinese). http://transport.chd.edu.cn/article/id/200705013 [24] WANG Y S, WU J, SU B L. Analysis on the hydroplaning of aircraft tire[J]. Advanced Materials Research, 2010, 87/88: 1-6. [25] WRAY G A, EHRLICH I R. A systematic experimental investigation of significant parameters affecting model tire hydroplaning[R]. Washington DC: National Aeronautics and Space Administration, 1973. [26] OH C W, KIM T W, JEONG H Y, et al. Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method[J]. Journal of Mechanical Science and Technology, 2008, 22 (1): 34-40. [27] SRIRANGAM S K, ANUPAM K, SCARPAS A, et al. Safety aspects of wet asphalt pavement surfaces through field and numerical modeling investigations[J]. Transportation Research Record, 2014 (2446): 37-51. [28] ONG G P, FWA T F. Prediction of wet-pavement skid resistance and hydroplaning potential[J]. Transportation Research Record, 2007 (2005): 160-171. [29] 蔡靖, 王永繁, 李岳. 基于轮组效应湿滑跑道飞机轮胎-水膜相互作用研究[J]. 科学技术与工程, 2015, 15 (11): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201511021.htmCAI Jing, WANG Yong-fan, LI Yue. Research on aircraft tyres-water film interaction on the wet pavement based on wheel set of aircrafts[J]. Science Technology and Engineering, 2015, 15 (11): 116-124. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201511021.htm [30] 柯文豪. 水泥混凝土路面抗滑性能及评价模型研究[D]. 西安: 长安大学, 2010.KE Wen-hao. Research on the cement concrete pavement anti-sliding performance and evaluation model[D]. Xi'an: Chang'an University, 2010. (in Chinese). [31] LIN Lin, WANG K C P, LI Q J, et al. Automated runway groove measurement and evaluation[J]. KSCE Journal of Civil Engineering, 2017, 21 (3): 758-765. -