Suspension stiffness selecting method of elastic suspension equipment under vehicle
-
摘要: 以车体低阶弹性振动、刚体振动和设备有源振动为输入, 提出了一种能够快速、简便确定弹性设备悬挂刚度的方法;在充分考虑吊挂设备各个方向上可能出现耦合振动、设备安装间隙、允许最大振动位移等因素的前提下, 推导了任意悬挂方式吊挂设备的刚体振动频率计算公式;给出了车下弹性吊挂设备悬挂刚度的选取方法与分析流程;以某动车组为例, 建立了车体与动力包的耦合振动分析模型, 计算得到了动力包的点头、摇头、浮沉、侧滚等刚体振动频率和三向悬挂刚度的取值范围, 并对比了动力包悬挂刚度理论计算结果与有限元结果。研究结果表明:在已知车体或吊挂设备基本参数的前提下, 采用提出的方法无需通过复杂的动力学建模分析即可计算出其点头、摇头、浮沉、侧滚等刚体振动频率, 与有限元计算结果相比, 刚体振动频率的最大相对误差为6.88%;计算所得动力包刚体振动频率与车体对应振动频率的比值均有效避开了耦合区间[0.750, 1.414], 因此, 采用提出的方法可快速、准确地确定吊挂设备的刚度范围, 从而避免设备与车体之间的共振。Abstract: Taking the low-order elastic vibration, the rigid body vibration and the equipment active vibration of carbody as inputs, a method for rapidly and simply determining the suspension stiffness of elastic equipment was proposed.Under the premise of fully considering the coupling vibration that may occur in all directions, equipment installation clearance, the maximum allowable vibration displacement of suspension equipment and other factors, the formula for calculating the rigid body vibration frequency of suspended equipment with arbitrary suspension method was derived.The selection method and analysis process of suspension stiffness of elastic suspension equipment under vehicle were given.Taking a certain electric multiple unit (EMU) as an example, the coupled vibration analysis model of carbody and power pack was established.The ranges of rigid body vibration frequencies of nodding, shaking, floating and sinking, lateralrolling, and three-dimensional suspension stiffnesses of power pack were calculated, and the theoretical calculation results of suspension stiffness of power pack were compared with corresponding finite element results.Research result shows that under the premise that the basic parameters of carbody or suspension equipment are known, the proposed method can calculate the rigid body vibration frequencies of nodding, shaking, floating and sinking, and lateral rolling, without complicated dynamic modeling and analysis. Comparing with the finite element calculation result, the maximum relative error in rigid body vibration frequency is 6.88%.All the calculated frequency ratios between rigid body vibration frequencies of power pack and corresponding vibration frequencies of carbody can effectively avoid the coupling interval[0.750, 1.414].Therefore, the stiffness of elastic suspension equipment under vehicle calculated by the proposed method can quickly and accurately determine the stiffness rang of suspension equipment, so as to avoid the resonance between equipment and carbody.
-
表 1 动力包基本参数
Table 1. Basic parameters of power pack
表 2 车体整备状态下弹性振动频率
Table 2. Elastic vibration frequencies of carbody under servicing state
表 3 整备状态下车体基本参数
Table 3. Basic parameters of carbody under servicing state
表 4 有限元结果与公式结果对比
Table 4. Comparison of finite element results and formula results
表 5 频率计算结果
Table 5. Frequency calculation results
表 6 刚度范围1
Table 6. Stiffness ranges one
表 7 刚度范围2
Table 7. Stiffness ranges two
表 8 有限元计算中的动力包悬挂刚度
Table 8. Suspension stiffnesses of power pack in finite element calculation
表 9 动力包频率有限元计算验证
Table 9. Frequency validation of power pack with finite element method
-
[1] 于金朋, 余建勇, 张立民. 高速列车整备车体谐振分析[J]. 大连交通大学学报, 2011, 32 (6): 9-13. doi: 10.3969/j.issn.1673-9590.2011.06.003YU Jin-peng, YU Jian-yong, ZHANG Li-min. The resonance analysis of complete car for high-speed train[J]. Journal of Dalian Jiaotong University, 2011, 32 (6): 9-13. (in Chinese). doi: 10.3969/j.issn.1673-9590.2011.06.003 [2] 卢耀辉. 铁道客车转向架焊接构架疲劳可靠性研究[D]. 成都: 西南交通大学, 2011.LU Yao-hui. Study on fatigue reliability of welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese). [3] 朴明伟. 车辆动态系统协同仿真及刚柔耦合关键技术的研究与应用[J]. 大连: 大连交通大学, 2010.PIAO Ming-wei. Studies and applications on key technologies of collaborative simulation and rigid-flex coupling for vehicle dynamical systems[D]. Dalian: Dalian Jiaotong University, 2010.(in Chinese) [4] 王英杰. 考虑车体柔性的车桥动力响应分析及行车舒适性影响因素研究[D]. 北京: 北京交通大学, 2011.WANG Ying-jie. Study on vehicle-bridge dynamic response with flexible carbody and riding comfort evaluation[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese). [5] 缪炳荣, 张卫华, 肖守讷, 等. 基于多体动力学和有限元法的车体结构疲劳寿命仿真[J]. 铁道学报, 2007, 29 (4): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200704007.htmMIAO Bing-rong, ZHANG Wei-hua, XIAO Shou-ne, et al. Carbody fatigue life simulation based on multibody dynamics and FEM[J]. Journal of the China Railway Society, 2007, 29 (4): 36-42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200704007.htm [6] 吴会超, 邬平波. 车下设备悬挂刚度对车辆平稳性影响[J]. 噪声与振动控制, 2012 (4): 73-77, 130. doi: 10.3969/j.issn.1006-1355.2012.04.017WU Hui-chao, WU Ping-bo. Effect of equipment suspension stiffness on riding quality[J]. Noise and Vibration Control, 2012 (4): 73-77, 130. (in Chinese). doi: 10.3969/j.issn.1006-1355.2012.04.017 [7] 王盛明. 基于功率流方法的高速列车车体与车下悬吊部件耦合振动研究[D]. 成都: 西南交通大学, 2018.WANG Sheng-ming. Study on coupled vibrations between carbody and underframe suspended equipment of high speed trains based on power flow method[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese). [8] 罗光兵. 高速列车车体及车下设备耦合振动研究[D]. 成都: 西南交通大学, 2014.LUO Guang-bing. Study on coupled vibration of carbody and suspended equipments for high speed trains[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese). [9] 石怀龙, 邬平波, 罗仁. 高速动车组弹性车体和设备耦合振动特性[J]. 西南交通大学学报, 2014, 49 (4): 693-699. doi: 10.3969/j.issn.0258-2724.2014.04.021SHI Huai-long, WU Ping-bo, LUO Ren. Coupled vibration characteristics of flexible car body and equipment of EMU[J]. Journal of Southwest Jiaotong University, 2014, 49 (4): 693-699. (in Chinese). doi: 10.3969/j.issn.0258-2724.2014.04.021 [10] 田向阳. 车下有源悬吊设备与车体耦合振动研究[J]. 噪声与振动控制, 2018, 38 (1): 137-142, 219. doi: 10.3969/j.issn.1006-1355.2018.01.027TIAN Xiang-yang. Study on the coupled vibration of underframe active rotational equipment andcarbody[J]. Noise and Vibration Control, 2018, 38 (1): 137-142, 219. (in Chinese). doi: 10.3969/j.issn.1006-1355.2018.01.027 [11] 吴会超, 邬平波, 曾京, 等. 车下设备对车体振动的影响[J]. 交通运输工程学报, 2012, 12 (5): 50-56. doi: 10.3969/j.issn.1671-1637.2012.05.007WU Hui-chao, WU Ping-bo, ZENG Jing, et al. Influence of equipment under car on carbody vibration[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (5): 50-56. (in Chinese). doi: 10.3969/j.issn.1671-1637.2012.05.007 [12] 吴会超. 高速动车组车体与车下设备耦合振动研究[D]. 成都: 西南交通大学, 2012.WU Hui-chao. Study on coupling vibration of high-speed EMU between carbody and underframe equipment[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese). [13] 王晨, 徐凤妹, 许自强, 等. 高速列车车体与动力包设备耦合振动分析[J]. 机车电传动, 2016 (5): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201605006.htmWANG Chen, XU Feng-mei, XU Zi-qiang, et al. Coupling vibration analysis between the DMUs carbody and power pack structure[J]. Electric Drive for Locomotives, 2016 (5): 12-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201605006.htm [14] 罗光兵, 曾京, 罗仁. 车下设备悬吊方式对车体振动的影响[J]. 铁道学报, 2015, 37 (5): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201505003.htmLUO Guang-bing, ZENG Jing, LUO Ren. The influence of underframe equipment suspended types on carbody vibrations[J]. Journal of the China Railway Society, 2015, 37 (5): 9-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201505003.htm [15] 罗光兵, 曾京. 车下设备的连接方式及悬挂参数匹配研究[J]. 现代制造工程, 2013 (5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201305003.htmLUO Guang-bing, ZENG Jing. Study on carbody flexible vibrations with considering underframe suspended equipment[J]. Modern Manufacturing Engineering, 2013 (5): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201305003.htm [16] LUO Guang-bing, ZENG Jing, WANG Qun-sheng. Identifying the relationship between suspension parameters of underframe equipment and carbody modal frequency[J]. Journal of Modern Transportation, 2014, 22 (4): 206-213. doi: 10.1007/s40534-014-0060-0 [17] 向福腾, 阳光武. 吊挂设备隔振频率与刚度优化分析[J]. 机械设计与制造, 2017 (12): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201712007.htmXIANG Fu-teng, YANG Guang-wu. Suspension equipment vibration isolation frequency and stiffness optimization analysis[J]. Machinery Design and Manufacture, 2017 (12): 19-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201712007.htm [18] 田程, 桂良进, 范子杰. 采用序列响应面法的大客车结构振动频率优化[J]. 汽车工程, 2010, 32 (10): 833-836, 887. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201010000.htmTIAN Cheng, GUI Liang-jin, FAN Zi-jie. Vibration frequencies optimization of bus structure using sequential response surface method[J]. Automotive Engineering, 2010, 32 (10): 833-836, 887. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201010000.htm [19] 陈宏, 袁浩东, 张帅伟, 等. 基于振动能量的设备状态评价方法研究[J]. 机械设计与制造, 2013 (2): 127-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201302040.htmCHEN Hong, YUAN Hao-dong, ZHANG Shuai-wei, et al. Research on the condition assessment method of equipment based on vibration energy[J]. Machinery Design and Manufacture, 2013 (2): 127-130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201302040.htm [20] 张明远, 于金朋, 张继旺, 等. 牵引变压器悬挂刚度采用响应面法的优化设计[J]. 噪声与振动控制, 2015, 35 (1): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201501028.htmZHANG Ming-yuan, YU Jin-peng, ZHANG Ji-wang, et al. Optimization design of suspension stiffness of traction transformers using response surface method[J]. Noise and Vibration Control, 2015, 35 (1): 127-131. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201501028.htm [21] 于金朋. 高速列车车体固有频率分析及优化设计方法研究[D]. 成都: 西南交通大学, 2018.YU Jin-peng. Research on inherent frequency analysis and optimization design method for high speed train carbody[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese). [22] 于金朋, 张卫华, 张立民, 等. 高速动车组车下吊挂设备隔振设计研究[J]. 铁道学报, 2017, 39 (1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201701005.htmYU Jin-peng, ZHANG Wei-hua, ZHANG Li-min, et al. Research on vibration isolation design of suspension equipment for high-speed train[J]. Journal of the China Railway Society, 2017, 39 (1): 33-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201701005.htm [23] 于金朋, 宋青鹏, 张明远, 等. 高速列车牵引变压器振动响应容限有限元分析[J]. 交通运输工程学报, 2016, 16 (5): 42-48. http://transport.chd.edu.cn/article/id/201605005YU Jin-peng, SONG Qing-peng, ZHANG Ming-yuan, et al. FEA of vibration response tolerance of traction transformer for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (5): 42-48. (in Chinese). http://transport.chd.edu.cn/article/id/201605005 [24] 黄雪飞, 于金朋, 张丽博, 等. 车下设备与车体接口双层隔振系统隔振参数研究[J]. 噪声与振动控制, 2015, 35 (3): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201503016.htmHUANG Xue-fei, YU Jin-peng, ZHANG Li-bo, et al. Study on vibration isolator parameters of the double-layer vibration isolation system of body-equipment EMU[J]. Noise and Vibration Control, 2015, 35 (3): 67-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201503016.htm [25] ZHOU J, GOODALL R M, REN L, et al. Influences of car body vertical flexibility on ride quality of passenger railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers, 2009, 223 (5): 461-471. [26] 邓海, 宫岛, 周劲松, 等. 高速列车车体下吊设备隔振设计及试验研究[J]. 城市轨道交通研究, 2015 (2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201502012.htmDENG Hai, GONG Dao, ZHOU Jin-song. On vibration isolation design and test of suspended equipment on highspeed railway vehicle[J]. Urban Mass Transit, 2015 (2): 44-48. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201502012.htm [27] SUN Wen-jing, GONG Dao, ZHOU Jin-song, et al. Influences of suspended equipment under car body on high-speed train ride quality[J]. Procedia Engineering, 2011, 16: 812-817. [28] 余建勇, 张立民, 黄晓宇, 等. 车下吊挂设备对整备车车体模态的影响[J]. 噪声与振动控制, 2012, 32 (5): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201205023.htmYU Jian-yong, ZHANG Li-min, HUANG Xiao-yu, et al. The influence of the hanging device on complete car's model[J]. Noise and Vibration Control, 2012, 32 (5): 97-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201205023.htm [29] 张相宁, 李明高. 动车组车下吊挂设备吊装装置的橡胶减振器研究[J]. 大连交通大学学报, 2012, 33 (5): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201205006.htmZHANG Xiang-ning, LI Ming-gao. Study on rubber isolator of hosting device for hanging EMU equipment[J]. Journal of Dalian Jiaotong University, 2012, 33 (5): 19-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201205006.htm [30] 陈亮, 康洪军, 张立民. 牵引变压器连接刚度对车体与设备振动影响分析[J]. 铁道车辆, 2012, 50 (8): 4-6, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201208003.htmCHEN Liang, KANG Hong-jun, ZHANG Li-min. Analysis of the effect of the connection stiffness of the traction transformer on vibration of carbody and equipment[J]. Rolling Stock, 2012, 50 (8): 4-6, 29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201208003.htm -