Multi-mass trammel pendulum model of fluid lateral sloshing for tank vehicle
Article Text (Baidu Translation)
-
摘要: 为深入研究液罐车整车侧向动力学行为, 探讨了椭圆形(圆形) 截面罐体等效机械液体侧向晃动模型; 基于计算流体动力学(CFD) 软件FLUENT, 评价了椭圆规摆(TP) 模型的预测精度, 分析了充液比、罐体截面椭圆率和激励频率对模型预测精度的影响; 提出了广义多质量TP模型, 通过合理分配液摆各部分质量及其间距来适应罐体截面椭圆率和充液比的变化; 基于Lagrange方法推导了广义多质量TP模型动力学方程, 给出了双质量TP (DMTP) 模型的质量比和质量间距参数的获取方法和拟合表达式, 并采用CFD方法评价了DMTP模型的预测精度。分析结果表明: 由TP模型得到的晃动力矩总体较CFD方法的小, 随着充液比和激励频率的增加, 预测误差变大, 充液比由30%增加到80%时, 峰值晃动力矩预测误差由15%增加到65%左右, 这主要是由于TP模型是在液体小初始倾斜角自由晃动条件下拟合所得, 当充液比和晃动频率较高时, 液摆的摆臂长度和参与晃动的液体质量都小于实际情况; DMTP模型在大部分充液比、罐体截面椭圆率和激励频率条件下都有相对稳定且较高的预测精度, 激励频率分别为0.2、0.3Hz时, DMTP模型的最大晃动力矩预测均方根误差均值和标准差分别比TP模型小54.2%、43.9%和45.1%、31.2%, 预测精度较TP模型有明显提高, 特别是能够较好地弥补TP模型在高充液比时预测误差较大的不足。Abstract: To deeply investigate the lateral dynamics of tank vehicle, the equivalent mechanical model of fluid lateral sloshing for a tank with elliptical (circular) sectional shape was studied.The predicting precision of the trammel pendulum (TP) model was evaluated by the computational fluid dynamics (CFD) software FLUENT, and the effects of fill level, tank sectional ellipticity, and excitation frequency on the model's predicting precision were analyzed.A generalized multi-mass TP model was proposed, the mass and distance between each part of fluid pendulum were reasonably distributed to adapt to the variations in tank sectional ellipticity and fill level.The dynamics equation for the generalized multi-mass TP model was derived based on the Lagrange approach.The method to determine the parameters of mass ratio and distance between the two masses, and the fitting formulas of double mass TP (DMTP) model were presented.The predicting precision of theproposed DMTP model was evaluated by the CFD method.Analysis result shows that the sloshing moment gained from the TP model is generally less than that computed by the CFD method, and the predicting error generally increases as the fill level increases.The predicting error of the peak sloshing moment increases from 15%to 65% when the fill level increases from 30%to 80%.This is mainly because the TP model is fitted under the conditions of small initial fluid incline angle and free sloshing.When the fill level and sloshing frequency are relatively high, both the length of pendulum arm and the sloshing fluid mass are less than the actual cases.The proposed DMTP model presents a relatively stable and high predicting precision in most conditions of fill levels, tank sectional ellipticities and excitation frequencies.Comparing with the TP model, when excitation frequency is 0.2 and 0.3 Hz, respectively, the mean value of the root mean square error (RMSE) of the predicted maximum sloshing moment in the DMTP model decreases by 54.2% and 43.9%, respectively, and the standard deviation decreases by 45.1% and 31.2%, respectively.The predicting precision of the proposed DMTP model is obviously higher than that of the TP model, and the DMTP model can especially well make up for the deficiency of low predicting precision of the TP model in the case of high fill level.
-
Key words:
- automotive engineering /
- vehicle dynamics /
- tank vehicle /
- fluid sloshing model /
- CFD
-
-
[1] AZADI S, JAFARI A, SAMADIAN M. Effect of parameters on roll dynamic response of an articulated vehicle carrying liquids[J]. Journal of Mechanical Scienceand Technology, 2014, 28 (3): 837-848. doi: 10.1007/s12206-013-1148-x [2] YANG Xiu-jian, GAO Jin. Compactly modelling and analysing the roll dynamics of a partly filled tank truck[J]. International Journal of Heavy Vehicle Systems, 2016, 23 (1): 81-105. doi: 10.1504/IJHVS.2016.074628 [3] SHANGGUAN W B, CHEN Y, WANG Q, et al. Simulation of apartly filled tank vehicle combination in TruckSim and tank design optimisation[J]. International Journal of Heavy Vehicle Systems, 2016, 23 (3): 264-282. doi: 10.1504/IJHVS.2016.077329 [4] TOUMI M, BOUAZARA M, RICHARD M J. Impact of liquid sloshing on thebehaviour of vehicles carrying liquid cargo[J]. European Journal of Mechanics—A/Solids, 2009, 28 (5): 1026-1034. doi: 10.1016/j.euromechsol.2009.04.004 [5] BOTTIGLIONE F, MANTRIOTA G. Field tests and validation of dynamical models of tank vehicles partⅠ: mathematical model and experimental apparatus[J]. International Journal of Heavy Vehicle Systems, 2012, 19 (1): 1-22. doi: 10.1504/IJHVS.2012.045757 [6] BOTTIGLIONE F, MANTRIOTA G. Field tests and validation of dynamical models of tank vehicles partⅡ: experimental tests and results[J]. International Journal of Heavy Vehicle Systems, 2012, 19 (19): 23-39. [7] IBRAHIM R A, PILIPCHUK V N, IKEDA T. Recent advances in liquid sloshing dynamics[J]. Applied Mechanics Reviews, 2001, 54 (2): 133-199. doi: 10.1115/1.3097293 [8] KANG X, RAKHEJA S, STIHARU I. Cargo load shift and its influence on tank vehicle dynamics under braking and turning[J]. International Journal of Heavy Vehicle Systems, 2002, 9 (3): 173-203. doi: 10.1504/IJHVS.2002.001175 [9] MODARESSI-TEHRANI K, RAKHEJA S, SEDAGHATI R. Analysis of the overturning moment caused by transient liquid slosh inside a partly filled moving tank[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220 (3): 289-301. doi: 10.1243/09544070D01705 [10] RANGANATHAN R, YING Y, MILES J B. Analysis of fluid slosh in partially filled tanks and their impact on the directional response of tank vehicles[J]. SAE Technical Paper, 1993-932942. [11] NICHKAWDE C, HARISH P M, ANANTHKRISHNAN N. Stability analysis of a multibody system model for coupled slosh-vehicle dynamics[J]. Journal of Sound and Vibration, 2004, 275 (3-5): 1069-1083. doi: 10.1016/j.jsv.2003.07.009 [12] MANTRIOTA G. Directional stability of articulated tank vehicles: a simplified model[J]. International Journal of Heavy Vehicle Systems, 2003, 10 (1/2): 144-165. doi: 10.1504/IJHVS.2003.002438 [13] SALEM M I. Rollover stability of partially filled heavy-duty elliptical tankers using trammel pendulums to simulate fluid sloshing[D]. Morgantown: West Virginia University, 2000. [14] SALEM M I, MUCINO V H, SAUNDERS E, et al. Lateral sloshing in partially filled elliptical tanker trucks using a trammel pendulum[J]. International Journal of Heavy Vehicle Systems, 2009, 16 (1/2): 207-224. doi: 10.1504/IJHVS.2009.023861 [15] 郑雪莲, 李显生, 任园园, 等. 非满载汽车罐车液体冲击等效机械模型[J]. 吉林大学学报: 工学版, 2013, 43 (6): 1488-1493. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201306009.htmZHENG Xue-lian, LI Xian-sheng, REN Yuan-yuan, et al. Equivalent mechanical model for liquid sloshing in partially-filled tank vehicle[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43 (6): 1488-1493. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201306009.htm [16] LI Xian-sheng, ZHENG Xue-lian, REN Yuan-yuan, et al. Study on driving stability of tank trucks based on equivalent trammel pendulum for liquid sloshing[J]. Discrete Dynamics in Nature and Society, 2013, 2013: 659873-1-15. [17] MODARESSI-TEHRANI K, RAKHEJA S, STIHARU I. Three-dimensional analysis of transient slosh within a partlyfilled tank equipped with baffles[J]. Vehicle System Dynamics, 2007, 45 (6): 525-548. doi: 10.1080/00423110601059013 [18] YAN G R, RAKHEJA S, SIDDIQUI K. Experimental study of liquid slosh dynamics in a partially-filled tank[J]. Journal of Fluids Engineering, 2009, 131 (7): 071303-1-14. doi: 10.1115/1.3059585 [19] YAN G R, RAKHEJA S, SIDDIQUI K. Analysis of transient fluid slosh in partly-filled tanks with and without baffles: part1—model validation[J]. International Journal of Heavy Vehicle Systems, 2010, 17 (3/4): 359-379. doi: 10.1504/IJHVS.2010.035994 [20] YAN G R, RAKHEJA S, SIDDIQUI K. Analysis of transient fluid slosh in partly-filled tanks with and without baffles: part2—role of baffles[J]. International Journal of Heavy Vehicle Systems, 2010, 17 (3/4): 380-406. doi: 10.1504/IJHVS.2010.035995 [21] BIGLARBEGIAN M, ZU J W. Tractor-semitrailer model for vehicles carrying liquids[J]. Vehicle System Dynamics, 2006, 44 (11): 871-885. doi: 10.1080/00423110600737072 [22] 李显生, 孟祥雨, 郑雪莲, 等. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报: 工学版, 2017, 47 (3): 737-743. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201703007.htmLI Xian-sheng, MENG Xiang-yu, ZHENG Xue-lian, et al. Dynamic characteristics of liquid sloshing in partially-filled tank[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47 (3): 737-743. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201703007.htm [23] 万滢, 赵伟强, 封冉, 等. 车-液耦合动力学建模及液体响应成分对操纵性的影响[J]. 吉林大学学报: 工学版, 2017, 47 (2): 353-364. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702003.htmWAN Ying, ZHAO Wei-qiang, FENG Ran, et al. Dynamic modeling and vehicle-liquid coupling characteristic analysis for tank trucks[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47 (2): 353-364. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702003.htm [24] KOLAEI A, RAKHEJA S, RICHARD M J. Effects of tank cross-section on dynamic fluid slosh loads and roll stability of a partly-filled tank truck[J]. European Journal of Mechanics—B/Fluids, 2014, 46: 46-58. doi: 10.1016/j.euromechflu.2014.01.008 [25] KOLAEI A, RAKHEJA S, RICHARD M J. Range of applicability of the linear fluid slosh theory for predicting transient lateral slosh and roll stability of tank vehicles[J]. Journal of Sound and Vibration, 2014, 333 (1): 263-282. doi: 10.1016/j.jsv.2013.09.002 [26] ANSARI M R, AZADI R, SALIMI E. Capturing of interface topological changes in two-phase gas-liquid flows using a coupled volume-of-fluid and level-set method (VOSET)[J]. Computers and Fluids, 2016, 125: 82-100. doi: 10.1016/j.compfluid.2015.09.014 [27] HASHEMINEJAD S M, AGHABEIGI M. Liquid sloshing in half-full horizontal elliptical tanks[J]. Journal of Sound and Vibration, 2009, 324 (1/2): 332-349. [28] HASHEMINEJAD S M, MOHAMMADI M M. Effect of anti-slosh baffles on free liquid oscillations in partially filled horizontal circular tanks[J]. Ocean Engineering, 2011, 38 (1): 49-62. doi: 10.1016/j.oceaneng.2010.09.010 [29] HASHEMINEJAD S M, AGHABEIGI M. Sloshing characteristics in half-full horizontal elliptical tanks with vertical baffles[J]. Applied Mathematical Modelling, 2012, 36 (1): 57-71. doi: 10.1016/j.apm.2011.02.026 [30] HASHEMINEJAD S M, AGHABEIGI M. Transient sloshing in half-full horizontal elliptical tanks under lateral excitation[J]. Journal of Sound and Vibration, 2011, 330 (14): 3507-3525. [31] 李显生, 于迪, 张景海. 基于遗传算法的液罐车侧倾稳定性模型[J]. 中国公路学报, 2015, 28 (7): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507015.htmLI Xian-sheng, YU Di, ZHANG Jing-hai. Roll stability model of tank truck based on genetic algorithm[J]. China Journal of Highway and Transport, 2015, 28 (7): 115-120. (in Chinese. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507015.htm -