Strength and damage characteristic of cement stabilized cinder macadam base
-
摘要: 为研究水泥稳定煤渣碎石作为路面基层材料的强度与损伤特性, 采用配方均匀试验方法, 获得了有约束条件下水泥稳定煤渣碎石基层的最优配比; 通过无侧限抗压试验与超声波测试对不同配比下的水泥稳定煤渣碎石的无侧限抗压强度与超声波波速进行了测试, 分析了超声波波速与无侧限抗压强度的关系; 根据超声波波速及试样的破坏过程, 对水泥稳定煤渣碎石的损伤变量进行了定义, 提出了损伤发展的控制阈值, 并建立了无侧限压缩条件下水泥稳定煤渣碎石基层填料的本构关系。研究结果表明: 水泥对基层材料的强度起到积极的影响, 而煤渣则会给材料强度带来负面影响; 水泥稳定煤渣碎石的最优配比为5∶35∶60 (水泥、煤渣、碎石的质量比), 其强度可达3.96 MPa, 可以作为路面基层填料使用; 随着材料抗压强度的增大, 超声波波速也有所增加, 但二者之间的规律性不强; 试件无侧限抗压试验过程可以分为压密阶段、弹性变形阶段、弹塑性变形阶段和破坏阶段, 利用超声波波速的变化可以将弹性变形阶段与弹塑性变形阶段进行区分; 根据超声波波速确定了水泥稳定煤渣碎石的损伤阈值为0.232, 材料可以带伤工作至损伤阈值处, 但不能超过损伤阈值。Abstract: In order to study the strength and damage characteristics of cement stabilized cinder macadam as a pavement base material, the optimal proportion of cement stabilized cinder macadam base under constraint conditions was obtained using the formula uniform test method.The ultrasonic wave velocity and unconfined compression strength of cement stabilized cinder macadam were tested through unconfined compression test and ultrasonic wave velocity test for different proportions, and the relationship between them was analyzed.Based on the ultrasonic wave velocity and the failure process of the specimens, the damage variable of cement stabilized cinder macadam was defined, the control threshold of damage development was proposed, and the constitutive relationship of cement stabilized cinder macadam base filler under unconfined compression was established.Analysis result shows that cement has a positive effect on the strength of the base material, while cinder has a negative effect on the strength of the material.The optimum proportion of cement stabilized cindermacadam is 5∶35∶60 (the mass ratio of cement, cinder and macadam).The strength of cement stabilized cinder macadam can reach 3.96 MPa, and it can be used as pavement base filler.As the compression strength increases, the ultrasonic wave velocity also increases, but the regularity between them is not strong.The test process can be divided into the compaction stage, elastic deformation stage, elastic-plastic deformation stage, and failure stage.Elastic deformation stage and elastic-plastic deformation stage can be distinguished by the change of ultrasonic wave velocity.The damage threshold of cement stabilized cinder macadam is determined to be 0.232 based on the ultrasonic wave velocity.The material can work with damage up to the damage threshold but cannot exceed it.
-
表 1 有约束的均匀设计
Table 1. Uniform design with constraints
表 2 各组试验的测试结果
Table 2. Test results of each group
-
[1] 钱觉时, 郑洪伟, 宋远明, 等. 流化床燃煤固硫灰渣的特性[J]. 硅酸盐学报, 2008, 36 (10): 1396-1400. doi: 10.3321/j.issn:0454-5648.2008.10.009QIAN Jue-shi, ZHENG Hong-wei, SONG Yuan-ming, et al. Special properties of fly ash and slag of fluidized bed coal combustion[J]. Journal of the Chinese Ceramic Society, 2008, 36 (10): 1396-1400. (in Chinese). doi: 10.3321/j.issn:0454-5648.2008.10.009 [2] KURAMA H, KAYA M. Usage of coal combustion bottom ash in concrete mixture[J]. Construction and Building Materials, 2008, 22 (9): 1922-1928. doi: 10.1016/j.conbuildmat.2007.07.008 [3] 吕松涛, 郑健龙, 仲文亮. 养生期水泥稳定碎石强度、模量及疲劳损伤特性[J]. 中国公路学报, 2015, 28 (9): 9-15, 45. doi: 10.3969/j.issn.1001-7372.2015.09.002LYU Song-tao, ZHENG Jian-long, ZHONG Wen-liang. Characteristics of strength, modulus and fatigue damage for cement stabilized macadam in curing period[J]. China Journal of Highway and Transport, 2015, 28 (9): 9-15, 45. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.09.002 [4] 吕松涛, 陈杰东, 张晖. 水泥稳定碎石拉压弯静态模量与动态模量比较分析[J]. 公路交通科技, 2016, 33 (10): 39-43, 59. doi: 10.3969/j.issn.1002-0268.2016.10.007LYU Song-tao, CHEN Jie-dong, ZHANG Hui. Comparative analysis of tensile, compression, flexural static modulus and dynamic modulus of cement-stabilized macadam[J]. Journal of Highway and Transportation Research and Development, 2016, 33 (10): 39-43, 59. (in Chinese). doi: 10.3969/j.issn.1002-0268.2016.10.007 [5] 李明杰. 水泥稳定碎石强度影响因素的试验研究[J]. 公路交通科技, 2010, 27 (4): 6-11, 43. doi: 10.3969/j.issn.1002-0268.2010.04.002LI Ming-jie. Experimental study on influencing factors of strength of cement stabilized macadam[J]. Journal of Highway and Transportation Research and Development, 2010, 27 (4): 6-11, 43. (in Chinese). doi: 10.3969/j.issn.1002-0268.2010.04.002 [6] 张海涛, 梁爽, 杨洪生, 等. 基于室内振动搅拌的水泥稳定碎石性能研究[J]. 中国公路学报, 2018, 31 (8): 58-65. doi: 10.3969/j.issn.1001-7372.2018.08.006ZHANG Hai-tao, LIANG Shuang, YANG Hong-sheng, et al. Study on performance of cement-stabilized crushed stone based on indoor vibration mix[J]. China Journal of Highway and Transport, 2018, 31 (8): 58-65. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.08.006 [7] 盛燕萍, 李亮亮, 关博文, 等. 高寒地区水镁石纤维早强型水泥稳定碎石的路用性能研究[J]. 冰川冻土, 2018, 40 (2): 355-361. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201802017.htmSHENG Yan-ping, LI Liang-liang, GUAN Bo-wen, et al. Study on the performance of gravel road stabilized by early strength agent and brucite fibers in alpine regions[J]. Journal of Glaciology and Geocryology, 2018, 40 (2): 355-361. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201802017.htm [8] 田宇翔, 马骉, 王大龙, 等. 冻融循环作用下水泥稳定碎石抗冻特性[J]. 长安大学学报: 自然科学版, 2017, 37 (4): 84-91. doi: 10.3969/j.issn.1671-8879.2017.04.011TIAN Yu-xiang, MA Biao, WANG Da-long, et al. Freeze resistance characteristics of cement-stabilized macadam under freeze-thaw cycle[J]. Journal of Chang'an University: Natural Science Edition, 2017, 37 (4): 84-91. (in Chinese). doi: 10.3969/j.issn.1671-8879.2017.04.011 [9] 宋宏芳, 岳祖润, 王天亮, 等. 季节性冻土区高速铁路路基水泥稳定碎石基床压实指标相关性[J]. 中国铁道科学, 2018, 39 (5): 8-14. doi: 10.3969/j.issn.1001-4632.2018.05.02SONG Hong-fang, YUE Zu-run, WANG Tian-liang, et al. Correlation between compaction indexes of foundation bed with cement-stabilized macadam for high speed railway subgrade in seasonal frozen soil region[J]. China Railway Science, 2018, 39 (5): 8-14. (in Chinese). doi: 10.3969/j.issn.1001-4632.2018.05.02 [10] 赵利军, 蒋文志, 侯劲汝, 等. 搅拌方式对水泥稳定碎石混合料抗压强度的影响[J]. 中国公路学报, 2018, 31 (1): 151-158. doi: 10.3969/j.issn.1001-7372.2018.01.018ZHAO Li-jun, JIANG Wen-zhi, HOU Jin-ru, et al. Influence of mixing methods on performance of compression strength for cement stabilized macadam mixture[J]. China Journal of Highway and Transport, 2018, 31 (1): 151-158. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.01.018 [11] 张彬, 张林江, 杨欢, 等. CT技术的低水泥含量级配碎石基层材料性能[J]. 辽宁工程技术大学学报: 自然科学版, 2017, 36 (12): 1275-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201712008.htmZHANG Bin, ZHANG Lin-jiang, YANG Huan, et al. Properties of low cement macadam base material based on CT technology[J]. Journal of Liaoning Technical University: Natural Science, 2017, 36 (12): 1275-1278. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201712008.htm [12] BAN H, PARK S W. Characteristics of modified soil-aggregate system and their application in pavements[J]. KSCE Journal of Civil Engineering, 2014, 18 (6): 1672-1678. doi: 10.1007/s12205-014-0639-3 [13] BAGUI S K. Analytical investigation for determining ressilient modulus for interface layer of aggregates[J]. Jordan Journal of Civil Engineering, 2013, 7 (3): 313-325. [14] SUN Yu, LI Li-han. Strength assessment and mechanism analysis of cement stabilized reclaimed lime-fly ash macadam[J]. Construction and Building Materials, 2018, 166: 118-129. doi: 10.1016/j.conbuildmat.2018.01.139 [15] LIU Zhi-jun. Experimental research on the engineering characteristics of polyester fiber-reinforced cement-stabilized macadam[J]. Journal of Materials in Civil Engineering, 2015, 27 (10): 1-10. [16] WANG Yi-qi, TAN Yi-qiu, GUO Meng, et al. Study on the dynamic compressive resilient modulus and frost resistance of semi-rigid base materials[J]. Road Materials and Pavement Design, 2017, 18 (S3): 1-11. [17] 刘栋, 李立寒, 崔华杰. 水泥稳定炉渣碎石的强度性能[J]. 建筑材料学报, 2014, 17 (3): 538-542. doi: 10.3969/j.issn.1007-9629.2014.03.030LIU Dong, LI Li-han, CUI Hua-jie. Strength performance of cement stabilized aggregate containing bottom ash aggregate (BAA)[J]. Journal of Buliding Materials, 2014, 17 (3): 538-542. (in Chinese). doi: 10.3969/j.issn.1007-9629.2014.03.030 [18] 刘栋, 李立寒, 崔华杰. 水泥稳定炉渣碎石基层路用性能[J]. 同济大学学报: 自然科学版, 2015, 43 (3): 405-409, 415. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201503013.htmLIU Dong, LI Li-han, CUI Hua-jie. Pavement performance of cement stabilized municipal solid waste incineration bottom ash aggregate and crushed stones[J]. Journal of Tongji University: Natural Science, 2015, 43 (3): 405-409, 415. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201503013.htm [19] 张互助, 程培峰, 邵洪杰, 等. 水泥煤渣稳定煤矸石基层材料温缩性能的试验研究[J]. 公路交通科技, 2007, 24 (11): 29-32. doi: 10.3969/j.issn.1002-0268.2007.11.007ZHANG Hu-zhu, CHENG Pei-feng, SHAO Hong-jie, et al. Test research on temperature shrinkage performance of cement and cinder stabilized coal gangue base course materials[J]. Journal of Highway and Transportation Research and Development, 2007, 24 (11): 29-32. (in Chinese). doi: 10.3969/j.issn.1002-0268.2007.11.007 [20] 喻平. 水泥稳定钢渣碎石基层抗疲劳性能研究[D]. 重庆: 重庆交通大学, 2017.YU Ping. Study on fatigue resistance of cement stabilized steel slag macadam base[D]. Chongqing: Chongqing Jiaotong University, 2017. (in Chinese). [21] 毛新亚. 有色金属冶炼废渣在道路基层材料中的应用研究[D]. 大连: 大连交通大学, 2017.MAO Xin-ya. Application of non-ferrous metal smelting slag in urban road base material[D]. Dalian: Dalian Jiaotong University, 2017. (in Chinese). [22] PECQUEUR G, CRIGNON C, QUÉNÉE B. Behaviour of cement-treated MSWI bottom ash[J]. Waste Management, 2001, 21 (3): 229-233. doi: 10.1016/S0956-053X(00)00094-5 [23] MÜLLER U, RÜBNER K. The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component[J]. Cement and Concrete Research, 2006, 36 (8): 1434-1443. doi: 10.1016/j.cemconres.2006.03.023 [24] SMARZEWSKI P, BARNAT-HUNEK D. Mechanical and durability related properties of high performance concrete made with coal cinder and waste foundry sand[J]. Construction and Building Materials, 2016, 121: 9-17. doi: 10.1016/j.conbuildmat.2016.05.148 [25] HEARN G J, OTTO A, GREENING P A K, et al. Engineering geology of cinder gravel in Ethiopia: prospecting, testing and application to low-volume roads[J]. Bulletin of Engineering Geology and the Environment, 2018, 77: 1-16. doi: 10.1007/s10064-017-1053-0 [26] 李相国, 宋留庆, 马保国, 等. 垃圾焚烧炉渣活性激发及对水泥性能的影响[J]. 武汉理工大学学报, 2012, 34 (6): 1-5. doi: 10.3963/j.issn.1671-4431.2012.06.001LI Xiang-guo, SONG Liu-qing, MA Bao-guo, et al. Stimulation of MSWI bottom ash activity and effects on cement performance[J]. Journal of Wuhan University of Technology, 2012, 34 (6): 1-5. (in Chinese). doi: 10.3963/j.issn.1671-4431.2012.06.001 [27] 谢燕, 吴笑梅, 樊粤明, 等. 生活垃圾焚烧炉渣用作水泥混合材的研究[J]. 华南理工大学学报: 自然科学版, 2009, 37 (12): 37-43. doi: 10.3321/j.issn:1000-565X.2009.12.008XIE Yan, WU Xiao-mei, FAN Yue-ming, et al. Investigation into incineration bottom ash of municipal solid waste used as cement admixture[J]. Journal of South China University of Technology: Natural Science Edition, 2009, 37 (12): 37-43. (in Chinese). doi: 10.3321/j.issn:1000-565X.2009.12.008 [28] 张明, 王菲, 杨强. 基于三轴压缩试验的岩石统计损伤本构模型[J]. 岩土工程学报, 2013, 35 (11): 1965-1971. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311003.htmZHANG Ming, WANG Fei, YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (11): 1965-1971. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311003.htm [29] 张国凯, 李海波, 夏祥, 等. 岩石单轴压缩下能量与损伤演化规律研究[J]. 岩土力学, 2015, 36 (增1): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1016.htmZHANG Guo-kai, LI Hai-bo, XIA Xiang, et al. Research on energy and damage evolution of rock under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36 (S1): 94-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1016.htm [30] 陈旭光, 张强勇. 岩石剪切破坏过程的能量耗散和释放研究[J]. 采矿与安全工程学报, 2010, 27 (2): 179-184. doi: 10.3969/j.issn.1673-3363.2010.02.008CHEN Xu-guang, ZHANG Qiang-yong. Research on the energy dissipation and release in the process of rock shear failure[J]. Journal of Mining and Safety Engineering, 2010, 27 (2): 179-184. (in Chinese). doi: 10.3969/j.issn.1673-3363.2010.02.008 [31] WANG Y, LI X, ZHENG B. Experimental study on mechanical properties of clay soil under compression by ultrasonic test[J]. European Journal of Environmental and Civil Engineering, 2018, 22 (6): . -