Gradation optimization of thermal resistant SMA-13 asphalt mixture
-
摘要: 为了研究热阻式SMA-13沥青混合料中耐火碎石最佳掺量, 设计了SMA-13沥青混合料配合比方案, 即在2.36~4.75 mm集料中, 耐火碎石体积掺量为100%, 在4.75~9.5 mm集料中, 耐火碎石体积掺量分别为20%、40%、60%、80%、100%, 在9.5~13.2 mm集料中, 耐火碎石体积掺量分别为10%、20%、30%;研究了耐火碎石掺量对SMA-13沥青混合料路用性能和阻热性能的影响规律, 提出了耐火碎石最佳掺量, 并分析了最佳掺量下热阻式SMA-13沥青混合料路用性能和阻热性能。试验结果表明: 与普通SMA-13沥青混合料相比, 将2.36~4.75 mm集料全部替换为耐火碎石时, 热阻式SMA-13沥青混合料路用性能降低约3%, 试件温度降低约1.4℃; 4.75~9.5 mm耐火碎石掺量占该粒径普通集料60%时, 热阻式SMA-13沥青混合料路用性能降低5%~10%, 试件温度降低约5.7℃, 阻热效果明显, 耐火碎石掺量超过60%时, 热阻式SMA-13沥青混合料路用性能急剧衰减, 阻热效果不明显, 掺量为60%~80%时, 热阻式SMA-13沥青混合料路用性能降低幅度达到10%~20%, 而试件温度降低幅度不超过0.7℃; 9.5~13.2 mm耐火碎石掺量占该粒径普通集料10%~20%时, 热阻式SMA-13沥青混合料路用性能基本不变, 而阻热效果明显, 掺量达到20%时, 路用性能降低约13%, 试件温度降低约7℃, 耐火碎石掺量超过20%时, 路用性能急剧下降, 无阻热效果, 试件温度增加0.1℃; 基于热阻式SMA-13沥青混合料降温效果最佳原则, 建议2.36~4.75、4.75~9.5与9.5~13.2 mm耐火碎石掺量分别占同粒径普通集料的100%、60%和20%。Abstract: In order to study the optimal dosage of refractory gravel in the thermal resistant SMA-13 asphalt mixture, the mixture proportion schemes were designed.In the schemes, the volume content of refractory gravel in the 2.36-4.75 mm ordinary aggregate was 100%, the volume content in the 4.75-9.5 mm ordinary aggregate was 20%, 40%, 60%, 80%, and 100%, respectively, and the volume content in the 9.5-13.2 mm ordinary aggregate was 10%, 20%, and 30%, respectively.The influence laws of refractory gravel content on the road property and heat resistant property of the SMA-13 asphalt mixture were studied, the optimum content ofrefractory gravel was put forward, and the road performance and thermal resistant performance of the SMA-13 asphalt mixture with this content were analyzed.Research result shows that compared with the ordinary SMA-13 asphalt mixture, when the 2.36-4.75 mm aggregate is entirely replaced by the refractory gravel, the road performance of the thermal resistant SMA-13 asphalt mixture reduces by about 3%, and the temperature of specimen decreases by about 1.4 ℃.When the 4.75-9.5 mm refractory gravel accounts for 60% of the same particle size of ordinary aggregates, the road performance of the thermal resistant SMA-13 asphalt mixture reduces by5%-10%, the temperature of the specimen decreases by about 5.7 ℃, and the heat resistance effect is obvious.When the content of the 4.75-9.5 mm refractory gravel is more than 60%, the road performance of the thermal resistant SMA-13 asphalt mixture decays rapidly, and the heat resistance effect is not obvious.When the content of the 4.75-9.5 mm refractory gravel is 60%-80%, the road performance of the thermal resistant SMA-13 asphalt mixture reduces by 10%-20%, and the temperature of the specimen decreases by less than 0.7 ℃.When the 9.5-13.2 mm refractory gravel accounts for 10%-20%of the same particle size of ordinary aggregates, the road performance of the thermal resistant SMA-13 asphalt mixture does not change basically, but the heat resistance effect is obvious.When the content reaches 20%, the road performance decreases by around 13%, and the temperature of the specimen decreases by about 7 ℃.When the content exceeds 20%, the road performance decreases sharply, the temperature of the specimen increases only by 0.1℃, and there is not heat resistance effect.Based on the best principle of cooling effect of the thermal resistant SMA-13 asphalt mixture, it is suggested that the contents of 2.36-4.75, 4.75-9.5and 9.5-13.2 mm refractory gravels account for 100%, 60%, and 20% of the same particle size of ordinary aggregates, respectively.
-
表 1 不同类型碎石的导热系数
Table 1. Thermal conductivities of different types of gravels
表 2 耐火碎石技术指标
Table 2. Technical indicators of refractory gravel
表 3 集料技术指标
Table 3. Technology indexes of aggregates
表 4 沥青技术指标
Table 4. Technical indexes of asphalt
表 5 SMA-13 矿料级配
Table 5. Mineral aggregate gradation of SMA-13
表 6 不同耐火碎石掺量的最佳油石比
Table 6. Optimum asphalt proportions with different refractory gravel contents
表 7 不同 2.36~4.75mm 耐火碎石掺量下 SMA-13 的路用性能
Table 7. Road performances of SMA-13 with different contents of 2.36-4.75 mm refractory gravel
表 8 不同 2.36~4.75mm 耐火碎石掺量下 SMA-13 的阻热性能
Table 8. Heat insulation performances of SMA-13 with different contents of 2.36-4.75 mm refractory gravel
表 9 不同 4.75~9.5 mm 耐火碎石掺量下 SMA-13 的路用性能
Table 9. Road performances of SMA-13 with different contents of 4.75-9.5 mm refractory gravel
表 10 0不同 4.75~9.5 mm 耐火碎石掺量下 SMA-13 的温度
Table 10. Temperatures of SMA-13 with different contents of 4.75-9.5 mm refractory gravel
表 11 1不同 9.5~13.2 mm 耐火碎石掺量下 SMA-13 的路用性能
Table 11. Road performances of SMA-13 with different contents of 9.5-13.2 mm refractory gravel
表 12 2不同 9.5~13.2 mm 耐火碎石掺量下 SMA-13 的温度
Table 12. Temperatures of SMA-13 with different contents of 9.5-13.2 mm refractory gravel
表 13 最佳耐火碎石掺量下 SMA-13 路用性能
Table 13. Road performances of SMA-13 with optimal dosages of refractory gravel
表 14 最佳耐火碎石掺量下 SMA-13 阻热性能
Table 14. Heat insulation performances of SMA-13 with optimal dosages of refractory gravel
-
[1] CARNIELO E, ZINZI M. Optical and thermal characterization of cool asphalts to mitigate urban temperatures and building cooling demand[J]. Building and Environment, 2013, 60: 56-65. doi: 10.1016/j.buildenv.2012.11.004 [2] ERELL E, PEARLMUTTER D, BONEH D, et al. Effect of high-albedo materials on pedestrian heat stress in urban street canyons[J]. Urban Climate, 2014, 10: 367-386. doi: 10.1016/j.uclim.2013.10.005 [3] HANSEN J, RUEDY R, SATO M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48: 1-29. [4] 李兴海. 沥青混合料的热物理特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.LI Xing-hai. Research on thermophysical characteristic of asphalt mixture[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese). [5] 李湾湾. 沥青路面热阻及光反射阻热技术研究与应用[D]. 西安: 长安大学, 2017.LI Wan-wan. Research and application of asphalt pavement thermal resistance and light reflection heat insulation technology[D]. Xi'an: Chang'an University, 2017. (in Chinese). [6] MOHAJERANI A, BAKARIC J, JEFFREY-BAILEY T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete[J]. Journal of Environmental Management, 2017, 197: 522-538. [7] 郑木莲, 何利涛, 高璇, 等. 基于降温功能的沥青路面热反射涂层性能分析[J]. 交通运输工程学报, 2013, 13 (5): 10-16. doi: 10.3969/j.issn.1671-1637.2013.05.002ZHENG Mu-lian, HE Li-tao, GAO Xuan, et al. Analysis of heat-reflective coating property for asphalt pavement based on cooling function[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (5): 10-16. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.05.002 [8] MALLICK R B, CHEN Bao-liang, BHOWMICK S. Harvesting energy from asphalt pavements and reducing the heat island effect[J]. International Journal of Sustainable Engineering, 2009, 2 (3): 214-228. doi: 10.1080/19397030903121950 [9] 赵延庆, 黄大喜. 沥青混合料破坏阶段的黏弹性行为[J]. 中国公路学报, 2008, 21 (1): 25-28. doi: 10.3321/j.issn:1001-7372.2008.01.005ZHAO Yan-qing, HUANG Da-xi. Viscoelastic behavior of asphalt mixtures with damage stage[J]. China Journal of Highway and Transport, 2008, 21 (1): 25-28. (in Chinese). doi: 10.3321/j.issn:1001-7372.2008.01.005 [10] GUNTOR N A A, FADHIL M, PONRAJ M, et al. Thermal performance of developed coating material as cool pavement material for tropical regions[J]. Journal of Materials in Civil Engineering, 2014, 26 (4): 755-760. [11] 蒋甫. 考虑对流传热的多孔沥青路面降温性能[J]. 土木工程学报, 2011, 44 (10): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110023.htmJIANG Fu. Temperature reduction performance of porous asphalt pavement considering heat convection[J]. China Civil Engineering Journal, 2011, 44 (10): 138-142. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201110023.htm [12] CHEN Mei-zhu, WAN Lu, LIN Jun-tao. Effect of phase-change materials on thermal and mechanical properties of asphalt mixtures[J]. Journal of Testing and Evaluation, 2012, 40 (5): 746-753. [13] QIN Ying-hong. A review on the development of cool pavements to mitigate urban heat island effect[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 445-459. [14] 张争奇, 张世豪, 郭大同, 等. 彩色反射式沥青路面涂层的路用性能[J]. 江苏大学学报: 自然科学版, 2018, 39 (5): 611-616. doi: 10.3969/j.issn.1671-7775.2018.05.020ZHANG Zheng-qi, ZHANG Shi-hao, GUO Da-tong, et al. Road performance of color reflective asphalt pavement coating[J]. Journal of Jiangsu University: Natural Science Edition, 2018, 39 (5): 611-616. (in Chinese). doi: 10.3969/j.issn.1671-7775.2018.05.020 [15] 张鑫. 沥青路面热反射与热阻技术降温机理与应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.ZHANG Xin. Research on heat reflection and thermal resistance technology of asphalt pavement cooling mechanism and its application[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese). [16] 刘佳. 热阻式路面材料研究[D]. 西安: 长安大学, 2009.LIU Jia. Study on the material of heat insulation pavement[D]. Xi'an: Chang'an University, 2009. (in Chinese). [17] FENG De-cheng, YI Jun-yan, WANG Dong-sheng. Performance and thermal evaluation of incorporating waste ceramic aggregates in wearing layer of asphalt pavement[J]. Journal of Materials in Civil Engineering, 2013, 25 (7): 857-863. doi: 10.1061/(ASCE)MT.1943-5533.0000788 [18] CHEN Mei-zhu, ZHENG Jun, LI Fu-zhou, et al. Thermal performances of asphalt mixtures using recycled tyre rubber as mineral filler[J]. Road Materials and Pavement Design, 2015, 16 (2): 379-391. doi: 10.1080/14680629.2014.1002524 [19] KUBO K, KIDO H. Study on pavement technologies to mitigate the heat island effect and their effectiveness[C]//International Society for Asphalt Pavements. 10th International Conference on Asphalt Pavements. Miami: Curran Associates, 2006: 1821-1830. [20] 杨凤雷. 蛭石在热阻路面中的应用研究[D]. 西安: 长安大学, 2015.YANG Feng-lei. Study on application of vermiculite in the thermal resistance pavement[D]. Xi'an: Chang'an University, 2015. (in Chinese). [21] 冯德成, 张鑫, 王广伟. 陶瓷热阻磨耗层材料开发及性能验证[J]. 公路, 2010 (11): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201011035.htmFENGDe-cheng, ZHANGXin, WANGGuang-wei. Development of ceramic thermal resistance wearing course materials and performance test[J]. Highway, 2010 (11): 151-155. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201011035.htm [22] 赵秋华. 陶粒热阻式磨耗层材料试验研究[D]. 西安: 长安大学, 2012.ZHAO Qiu-hua. The experimental research on the material of the ceramic thermal resistance wearing course[D]. Xi'an: Chang'an University, 2012. (in Chinese). [23] 邹玲, 郑南翔, 纪小平. 热阻沥青混合料薄层罩面阻热性能研究[J]. 武汉理工大学学报, 2014, 36 (6): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201406009.htmZOU Ling, ZHENG Nan-xiang, JI Xiao-ping. Study on thermal resistance performance of thermal resistance thin surface of asphalt mixture[J]. Journal of Wuhan University of Technology, 2014, 36 (6): 41-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201406009.htm [24] 雷雨滋, 郑南翔, 纪小平. 热阻沥青混合料的降温效果及路用性能评价[J]. 武汉理工大学学报, 2013, 35 (11): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201311014.htmLEI Yu-zi, ZHENG Nan-xiang, JI Xiao-ping. Evaluation on temperature reduction and road performances of thermal[J]. Journal of Wuhan University of Technology, 2013, 35 (11): 68-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201311014.htm [25] 袁自能. 缓解城市热岛效应沥青混合料性能试验分析[J]. 公路与汽运, 2016 (1): 118-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201601031.htmYUAN Zi-neng. Test and analysis on the performance of asphalt mixture for ease urban heat island effect[J]. Highways and Automotive Applications, 2016 (1): 118-121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNQY201601031.htm [26] SINGH A, DAS A, BASU S. A numerical study on the effect of aggregate gradation on mechanical response of asphalt mix[J]. KSCE Journal of Civil Engineering, 2012, 16 (4): 594-600. [27] 张超, 许志鸿, 杨瑞华, 等. 骨架密实型沥青混合料中高温性能与级配关系[J]. 同济大学学报: 自然科学版, 2008, 36 (5): 603-608. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200805008.htmZHANG Chao, XU Zhi-hong, YANG Rui-hua et al. High temperature performance and gradation design in skeleton and dense construction asphalt mixture[J]. Journal of Tongji University: Natural Science, 2008, 36 (5): 603-608. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200805008.htm [28] 李彦伟, 张倩, 谢来斌, 等. 沥青路面导热系数测试及其对路面温度场影响的模拟[J]. 功能材料, 2012, 43 (S1): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2012S1033.htmLI Yan-wei, ZHANG Qian, XIE Lai-bin, et al. Testing of asphalt mixture thermal conductivity and its influences on asphalt pavement temperature field[J]. Functional Materials, 2012, 43 (S1): 129-132. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL2012S1033.htm [29] JIANG Ying-jun, YE Ya-qing, XUE Jin-shun, et al. Thermal resistant stone mastic asphalt surface and its antirutting performance[J]. Journal of Materials in Civil Engineering, 2018, 30 (11): 06018019-1-10. [30] 王广伟. 热阻式超薄磨耗层的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.WANG Guang-wei. Experimental research on the ultra-thin wearing course of thermal resistance function[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese). -