留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沥青混合料松弛模量数值转换方法比较

顾兴宇 崔冰彦 邢世勤 韩东东

顾兴宇, 崔冰彦, 邢世勤, 韩东东. 沥青混合料松弛模量数值转换方法比较[J]. 交通运输工程学报, 2019, 19(5): 1-10. doi: 10.19818/j.cnki.1671-1637.2019.05.001
引用本文: 顾兴宇, 崔冰彦, 邢世勤, 韩东东. 沥青混合料松弛模量数值转换方法比较[J]. 交通运输工程学报, 2019, 19(5): 1-10. doi: 10.19818/j.cnki.1671-1637.2019.05.001
GU Xing-yu, CUI Bing-yan, XING Shi-qin, HAN Dong-dong. Comparison of numerical interconversion methods for relaxation modulus of asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 1-10. doi: 10.19818/j.cnki.1671-1637.2019.05.001
Citation: GU Xing-yu, CUI Bing-yan, XING Shi-qin, HAN Dong-dong. Comparison of numerical interconversion methods for relaxation modulus of asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 1-10. doi: 10.19818/j.cnki.1671-1637.2019.05.001

沥青混合料松弛模量数值转换方法比较

doi: 10.19818/j.cnki.1671-1637.2019.05.001
基金项目: 

国家自然科学基金项目 51878162

详细信息
    作者简介:

    顾兴宇(1976-), 男, 江苏泰兴人, 东南大学教授, 工学博士, 从事路面材料与结构研究

  • 中图分类号: U416.217

Comparison of numerical interconversion methods for relaxation modulus of asphalt mixture

More Information
Article Text (Baidu Translation)
  • 摘要: 为了有效获取沥青混合料的松弛模量, 比较了分别由动态模量和蠕变柔量得到松弛模量的数值转换方法, 研究了沥青混合料线性黏弹性参数的转换原理; 对同种沥青混合料分别进行了动态模量和蠕变柔量测试, 拟合了试验数据主曲线, 获得了松弛模量函数, 分析了2种数值转换法存在差异的可能原因; 考虑了不同Maxwell单元数对松弛模量计算结果的影响, 比较了不同沥青混合料的松弛模量, 验证了2种方法对不同沥青混合料的适用性。研究结果表明: 表征沥青混合料松弛模量的Maxwell单元数越少, 其主曲线波动越大, 当单元数大于11时, 主曲线间差异小于5.26%, 建议选择11个单元左右以提高计算效率; 由动态模量和蠕变柔量转换得到的松弛模量符合材料的基本松弛特性, 2条松弛模量主曲线重合度较高, 且相关系数大于0.99;对于不同的沥青混合料, 2种转换方法同样适用, 在线性黏弹性范围内, 二者的差异主要出现在较低时间区域(10-8~10-4 s), 建议实际应用中采用2种方法的平均值以减少同种试验误差的干扰; 添加温拌剂在一定程度上会降低沥青混合料的松弛模量, 相比于普通热拌沥青混合料, 添加发泡温拌剂和Evotherm温拌剂的沥青混合料松弛模量分别降低了14.69%和13.61%, 从对松弛模量的影响程度来看, 2种温拌剂的使用效果相当。

     

  • 图  1  广义Maxwell模型

    Figure  1.  Generalized Maxwell model

    图  2  广义Kelvin模型

    Figure  2.  Generalized Kelvin model

    图  3  动态模量主曲线

    Figure  3.  Dynamic modulus master curves

    图  4  相位角主曲线

    Figure  4.  Phase angle master curves

    图  5  蠕变柔量主曲线

    Figure  5.  Creep compliance master curves

    图  6  不同Maxwell单元数下的松弛模量主曲线

    Figure  6.  Relaxation modulus master murves under different Maxwell element numbers

    图  7  HMA的松弛模量主曲线

    Figure  7.  Relaxation modulus master curves of HMA

    图  8  温拌沥青混合料的松弛模量主曲线

    Figure  8.  Relaxation modulus master curves of warm mixed asphalt mixtures

    图  9  三种沥青混合料的松弛模量主曲线

    Figure  9.  Relaxation modulus master curves of three asphalt mixtures

    表  1  三种沥青混合料级配

    Table  1.   Gradations of three asphalt mixtures

    筛孔尺寸/mm 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
    HMA混合料级配/% 100 93.0 74.8 50.3 30.3 24.6 19.4 15.0 10.3 6.5
    发泡温拌混合料级配/% 100 90.6 69.5 47.8 32.5 23.5 18.5 14.3 9.7 5.8
    Evotherm温拌混合料级配/% 100 91.1 75.0 49.1 32.8 23.6 18.6 14.3 9.8 5.8
    下载: 导出CSV

    表  2  动态模量转换法得到的松弛模量Prony级数系数

    Table  2.   Prony series coefficients of relaxation modulus obtained by dynamic modulus interconversion method

    单元个数 ρk/s Ek /MPa
    HMA 发泡温拌沥青混合料 Evotherm温拌沥青混合料
    1 2.0×10-6 2 885.37 2 789.06 2 772.81
    2 2.0×10-5 3 861.21 3 796.04 3 742.27
    3 2.0×10-4 4 787.52 4 191.18 4 125.67
    4 2.0×10-3 4 176.13 3 305.38 3 449.11
    5 2.0×10-2 3 507.72 3 139.01 3 207.17
    6 2.0×10-1 1 658.45 1 458.80 1 433.13
    7 2.0×100 677.33 552.71 530.77
    8 2.0×101 198.79 173.03 184.70
    9 2.0×102 67.66 41.32 42.56
    10 2.0×103 39.76 30.29 28.22
    11 2.0×104 8.28 8.01 8.51
    下载: 导出CSV

    表  3  蠕变柔量转换法得到的松弛模量Prony级数系数

    Table  3.   Prony series coefficients of relaxation modulus obtained by creep compliance interconversion method

    单元个数 τj/s Ek/MPa
    HMA 发泡温拌沥青混合料 Evotherm温拌沥青混合料
    1 2.0×10-6 2 828.84 2 627.85 2 759.64
    2 2.0×10-5 7 949.18 7 475.12 7 364.29
    3 2.0×10-4 7 385.47 7 158.08 7 128.25
    4 2.0×10-3 6 211.09 5 515.92 5 818.92
    5 2.0×10-2 4 239.35 3 351.35 3 462.57
    6 2.0×10-1 2 250.29 1 968.26 2 080.35
    7 2.0×100 825.64 688.14 695.87
    8 2.0×101 216.26 194.71 217.45
    9 2.0×102 76.19 59.27 58.26
    10 2.0×103 37.56 25.57 32.71
    11 2.0×104 8.45 7.32 7.81
    下载: 导出CSV
  • [1] SCHAPERY R A. A simple collocation method for fitting viscoelastic models to experimental data[R]. Pasadena: California Institute of Technology, 1962.
    [2] COST T L, BECKER E B. A multidata method of approximate Laplace transform inversion[J]. International Journal for Numerical Methods in Engineering, 1970, 2(2): 207-219. doi: 10.1002/nme.1620020206
    [3] TABATABAEE H A, VELASQUEZ R, BAHIA H U. Modeling thermal stress in asphalt mixtures undergoing glass transition and physical hardening[J]. Transportation Research Record, 2012(2296): 106-114.
    [4] MOON K H, MARASTEANU M O, TUROS M. Comparison of thermal stresses calculated from asphalt binder and asphalt mixture creep tests[J]. Journal of Materials in Civil Engineering, 2013, 25(8): 1059-1067. doi: 10.1061/(ASCE)MT.1943-5533.0000651
    [5] PACHECO J E L, BAVASTRI C A, PEREIRA J T. Viscoelastic relaxation modulus characterization using Prony series[J]. Latin American Journal of Solids and Structures, 2015, 12(2): 420-445. doi: 10.1590/1679-78251412
    [6] ZHAO Yan-qing, NI Yuan-bao, WANG Lei, et al. Viscoelastic response solutions of multilayered asphalt pavements[J]. Journal of Engineering Mechanics, 2014, 140(10): 1-8.
    [7] LI Ling-lin, LI Wen-long, WANG Hao, et al. Investigation of Prony series model related asphalt mixture properties under different confining pressures[J]. Construction and Building Materials, 2018, 166: 147-157. doi: 10.1016/j.conbuildmat.2018.01.120
    [8] PARK S W, SCHAPERY R A. Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series[J]. International Journal of Solids and Structures, 1999, 36(11): 1653-1675. doi: 10.1016/S0020-7683(98)00055-9
    [9] ZHU Yao-ting, SUN Lu, XU Hui-lin. L-curve based Tikhonov's regularization method for determining relaxation modulus from creep test[J]. Journal of Applied Mechanics, 2011, 78(3): 1-7.
    [10] EBRAHIMI M G, SALEH M, GONZALEZ M M. Interconversion between viscoelastic functions using the Tikhonov regularization method and its comparisons with approximate techniques[J]. Road Materials and Pavement Design, 2014, 15(4): 820-840. doi: 10.1080/14680629.2014.924428
    [11] EBRAHIMI M, SALEH M, GONZALEZ M M. Investigating applicability of complex modulus and creep compliance interconversion in asphalt concrete[J]. Advances in Civil Engineering Materials, 2014, 3(1): 107-121.
    [12] PARK S W, KIM Y R. Fitting Prony-series viscoelastic models with power-law presmoothing[J]. Journal of Materials in Civil Engineering, 2001, 13(1): 26-32. doi: 10.1061/(ASCE)0899-1561(2001)13:1(26)
    [13] MUN S, CHEHAB G R, KIM Y R. Determination of time-domain viscoelastic functions using optimized interconversion techniques[J]. Road Materials and Pavement Design, 2007, 8(2): 351-365. doi: 10.1080/14680629.2007.9690078
    [14] MUN S, ZI G. Modeling the viscoelastic function of asphalt concrete using a spectrum method[J]. Mechanics of Time-Dependent Materials, 2010, 14(2): 191-202. doi: 10.1007/s11043-009-9102-0
    [15] PARROT J M, DUPERRAY B. Exact computation of creep compliance and relaxation modulus from complex modulus measurements data[J]. Mechanics of Materials, 2008, 40: 575-565. doi: 10.1016/j.mechmat.2007.11.004
    [16] CHEN Song-qiang, WANG Dong-shen, YI Jun-yan, et al. Implement the Laplace transform to convert viscoelastic functions of asphalt mixtures[J]. Construction and Building Materials, 2019, 203: 633-641. doi: 10.1016/j.conbuildmat.2019.01.116
    [17] 吕慧杰, 刘涵奇, 罗蓉. 基于单轴压缩蠕变试验求解沥青混合料松弛模量[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(6): 1067-1072. doi: 10.3963/j.issn.2095-3844.2016.06.025

    LYU Hui-jie, LIU Han-qi, LUO Rong. Determination of relaxation modulus of asphalt mixtures using uniaxial compressive creep test[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2016, 40(6): 1067-1072. (in Chinese). doi: 10.3963/j.issn.2095-3844.2016.06.025
    [18] FALCHETTO A C, MOON K H. Comparisons of analytical and approximate interconversion methods for thermal stress computation[J]. Canadian Journal of Civil Engineering, 2015, 42(10): 705-719. doi: 10.1139/cjce-2014-0558
    [19] SCHAPERY R A, PARK S W. Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method[J]. International Journal of Solids and Structures, 1999, 36(11): 1677-1699. doi: 10.1016/S0020-7683(98)00060-2
    [20] YIN Hao, CHEHAB G R, STOFFELS S M, et al. Use of creep compliance interconverted from complex modulus for thermal cracking prediction using the M-E pavement design guide[J]. International Journal of Pavement Engineering, 2010, 11(2): 95-105. doi: 10.1080/10298430802621531
    [21] LOY R J, DE HOOG F R, ANDERSSEN R S. Interconversion of Prony series for relaxation and creep[J]. Journal of Rheology, 2015, 59(5): 1261-1270. doi: 10.1122/1.4929398
    [22] TAREFDER R A, RAHMAN A S M A. Interconversion of dynamic modulus to creep compliance and relaxation modulus: numerical modeling and laboratory validation-final report[R]. Reno: University of Nevada, 2016.
    [23] ZHAO Yan-qin, NI Yuan-bao, ZENG Wei-qiao. A consistent approach for characterising asphalt concrete based on generalised Maxwell or Kelvin model[J]. Road Materials and Pavement Design, 2014, 15(3): 674-690. doi: 10.1080/14680629.2014.889030
    [24] HO C H, ROMERO P. Alternative function to represent relaxation modulus of viscoelastic materials[J]. Journal of Materials in Civil Engineering, 2012, 24(2): 152-158. doi: 10.1061/(ASCE)MT.1943-5533.0000378
    [25] 王志臣, 郭乃胜, 赵颖华, 等. 沥青混合料黏弹性主曲线模拟及换算[J]. 工程力学, 2017, 34(2): 242-248. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201702030.htm

    WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, et al. Viscoelastic master curve simulation and conversion of asphalt mixtures[J]. Engineering Mechanics, 2017, 34(2): 242-248. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201702030.htm
    [26] ZHANG Wei-guang, CUI Bing-yan, GU Xing-yu, et al. Comparison of relaxation modulus converted from frequency-and time-dependent viscoelastic functions through numerical methods[J]. Applied Sciences, 2018, 8(12): 1-15.
    [27] 吕慧杰, 张诚, 刘涵奇, 等. 沥青混合料蠕变柔量转换松弛模量的新方法[J]. 公路交通科技, 2017, 34(11): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201711001.htm

    LYU Hui-jie, ZHANG Cheng, LIU Han-qi, et al. A novel approach for converting creep compliance into relaxation modulus for asphalt mixtures[J]. Journal of Highway and Transportation Research and Development, 2017, 34(11): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201711001.htm
    [28] ZHAO Yan-qing, TANG Ji-min, LIU Hui. Construction of triaxial dynamic modulus master curve for asphalt mixtures[J]. Construction and Building Materials, 2012, 37: 21-26. doi: 10.1016/j.conbuildmat.2012.06.067
    [29] 田小革, 刘良骏, 于发袂, 等. 老化沥青混合料的松弛模量模型[J]. 公路交通科技, 2015, 32(4): 1-6. doi: 10.3969/j.issn.1002-0268.2015.04.001

    TIAN Xiao-ge, LIU Liang-jun, YU Fa-mei, et al. Relaxation modulus model of aged asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2015, 32(4): 1-6. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.04.001
    [30] LUO Rong, LYU Hui-jie, LIU Han-qi. Development of Prony series models based on continuous relaxation spectrums for relaxation moduli determined using creep tests[J]. Construction and Building Materials, 2018, 168: 758-770. doi: 10.1016/j.conbuildmat.2018.02.036
    [31] 王志臣, 郭乃胜, 赵颖华, 等. 沥青混合料松弛和延迟时间谱的确定与换算[J]. 北京工业大学学报, 2019, 45(2): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201902009.htm

    WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, et al. Determination and conversion of relaxation and retardation time spectrum of asphalt mixtures[J]. Journal of Beijing University of Technology, 2019, 45(2): 168-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201902009.htm
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1894
  • HTML全文浏览量:  570
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-19
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回