Rheological property of polyphosphoric acid modified asphalt
-
摘要: 为研究多聚磷酸(PPA)对沥青性能的影响规律与作用机理, 采用四组分分析试验和沥青三大指标试验研究了PPA对不同基质沥青化学组分的影响, 基于动态剪切流变仪(DSR)开展了沥青温度扫描试验与频率扫描试验, 分析了不同配比的PPA改性沥青、PPA/SBS改性沥青与PPA/橡胶粉改性沥青在不同温度、不同动态频率加载条件下的流变性能变化趋势。分析结果表明: 随着PPA含量(质量分数, 后同)的增加, 沥青质含量逐渐提高, 油分(饱和分与芳香分)含量减小, 沥青逐渐由溶胶结构转变成溶-凝胶结构, 沥青高温性能逐渐增强; PPA改性沥青的高温性能与基质沥青的沥青质含量相关, 沥青质含量大的基质沥青经PPA改性后其沥青质含量提升最大, 针入度降低最多, 具备更好的高温性能; 基质沥青、SBS改性沥青与橡胶粉改性沥青掺入PPA后, 其抗车辙因子分别提高了1.0~8.2、0.8~13.9与2.9~19.7 kPa, 表明PPA可有效改善基质沥青、SBS改性沥青和橡胶粉改性沥青的高温、感温及流变性能, 增强沥青的弹性特征, 提高其抵抗剪切变形能力; 与单一改性沥青相比, PPA复合改性沥青的流变性能改善效果更为明显, PPA与聚合物改性沥青之间存在良好的相容性; 随着PPA含量的增加, 沥青10℃延度逐渐降低, 当PPA含量为1.5%时, 基质沥青、SBS改性沥青与橡胶粉改性沥青10℃延度分别下降77%、64%与39%, 表明PPA对沥青的低温性能存在一定负面作用, 建议PPA含量不宜超过1.0%;PPA/SBS改性沥青最佳复配比为1.0%PPA复配3%SBS, PPA/橡胶粉改性沥青最佳复配比为0.75%PPA复配15%橡胶粉。Abstract: To study the effect and action mechanism of polyphosphoric acid(PPA) on the asphalt performance, the effects of PPA on the chemical compositions of different matrix asphalts were studied by performing the four-component analysis test and three major indices test of asphalt. Based on the dynamic shear rheometer(DSR), the temperature scanning test and frequency scanning test of asphalt were carried out. The changing trends of rheological properties of PPA modified asphalt, PPA/SBS modified asphalt and PPA/rubber powder modified asphalt with different ratios under different temperatures and different dynamic frequency loading conditions were analyzed. Analysis result shows that as the PPA content(mass fraction, same later) increases, the asphaltene content increases gradually, and the oil content(saturation and aromatic) decreases. The asphalt changes gradually from the sol structure to the solution-gel structure, and the high temperature performance of asphalt enhances gradually. The high temperature performance of PPA modified asphalt is related to the asphaltene content of matrix asphalt. After being modified by PPA, the asphaltene content of matrix asphalt with high asphaltene content increases the most, its penetration reduces the most, and it has better high temperature performance. The rutting resistance factors of matrix asphalt, SBS modified asphalt and rubber powder modified asphalt increase by 1.0-8.2, 0.8-13.9 and 2.9-19.7 kPa, respectively, indicating that the PPA can effectively improve the high temperature performances, temperature sensitivities, and rheological properties of matrix asphalt, SBS modified asphalt and rubber powder modified asphalt, enhance the elastic characteristics of the asphalts, and improve their resistances to shear deformation. Compared with the single modified asphalt, the rheological property of PPA composite modified asphalt improves more obviously. There exists a good compatibility between the PPA and the polymer modified asphalt. As the PPA content increases, the ductility of asphalt at 10 ℃ decreases gradually. When the PPA content is 1.5%, the ductilities of matrix asphalt, SBS modified asphalt and rubber powder modified asphalt at 10 ℃ decrease by 77%, 64% and 39%, respectively, indicating that the PPA has a certain negative effect on the low temperature performance of asphalt. It is recommended that the PPA content should not exceed 1.0%. The optimal compound ratio of PPA/SBS modified asphalt is 1.0% PPA compounding 3%. The optimal compound ratio of PPA/rubber powder modified asphalt is 0.75% PPA compounding 15% rubber powder.
-
表 1 基质沥青技术指标
Table 1. Technical indices of matrix asphalts
技术指标 试验结果 规范限值 试验方法 路畅牌 壳牌 东海牌 针入度(25 ℃, 5 s, 100 g)/0.1 mm 65.0 71.0 62.0 60~80 T 0604 延度(10 ℃, 5 cm·min-1)/cm 24.6 47.2 31.2 ≥20 T 0605 软化点/℃ 49.5 49.8 47.7 ≥46 T 0606 闪点/℃ 306 283 322 ≥260 T 0611 溶解度/% 99.6 99.7 99.7 ≥99.5 T 0607 旋转薄膜烘箱试验后残留物 残留针入度比(25 ℃)/% 68 69 68 ≥61 T 0604 残留延度(10 ℃)/cm 11 13 11 ≥6 T 0605 质量变化/% -0.47 -0.41 -0.43 ≤±0.8 T 0609 表 2 PPA技术参数
Table 2. Technical parameters of PPA
技术参数 试验结果 试验方法 P2O5含量/% ≥76 HG/T 3696—2011 SO含量/% ≤0.02 HG/T 3696.2—2011 重金属含量/% ≤0.001 GB/T 23950—2009 Fe含量/% GB/T 3049—2006 As含量/% ≤0.005 GB/T 23947.1—2009 表 3 橡胶粉技术指标
Table 3. Technical indices of rubber powder
技术指标 检测结果 技术要求 试验方法 筛余/% 5 < 10 GB/T 19208 相对密度 1.11 1.10~1.30 JT/T 797 含水率/% 0.5 < 1.0 GB/T 19208 金属含量/% 0.029 < 0.030 JT/T 797 纤维含量/% 0 < 0.1 GB/T 19208 天然橡胶含量/% 41.95 ≥30 丙酮抽出物/% 7 ≤16 GB/T 3516 炭黑含量/% 29 ≥28 GB/T 14837 橡胶烃含量/% 54 ≥48 GB/T 14837 表 4 791-H型SBS改性剂技术指标
Table 4. Technical indices of 791-H SBS modifier
技术指标 扯断拉伸率/% 挥发分/% 嵌段比 拉伸强度/MPa 分子结构 300%定伸应力/MPa 邵氏硬度/HA 熔体流动率/10 min 扯断永久变形/% 灰分/% 试验结果 ≥700 ≤0.7 30/70 ≥16 线型 ≥2 ≥68 0.5~2.5 ≤40 ≤0.2 表 5 PPA改性沥青制备工艺参数
Table 5. Preparation technological parameters of PPA modified asphalts
沥青类型 融化温度/℃ 溶胀温度/℃ 溶胀时间/min 剪切温度/℃ 剪切转速/(r·min-1) 剪切时间/min PPA单一改性沥青 150 150 3 500 6 PPA/橡胶粉改性沥青 180 180 60 180 5 000 45 PPA/SBS改性沥青 170 170 4 500 45 表 6 沥青四组分分析结果
Table 6. Four-component analysis results of asphalts
沥青类型 PPA含量/% 软化点/℃ 针入度/0.1 mm 10 ℃延度/mm 沥青质含量/% 饱和分含量/% 芳香分含量/% 胶质含量/% 路畅牌70#沥青 0.0 49.5 65.0 246 13.57 22.90 44.70 18.83 0.5 50.5 52.8 129 16.49 18.88 43.25 21.38 1.0 57.7 47.3 101 19.96 18.33 46.26 15.44 壳牌70#沥青 0.0 49.8 71.0 472 12.33 27.37 46.90 13.40 0.5 52.8 63.2 278 15.11 26.56 43.44 14.89 1.0 58.1 57.0 194 17.00 24.10 42.29 16.61 东海牌70#沥青 0.0 47.7 62.0 312 9.47 28.58 40.34 21.61 0.5 51.2 56.4 258 11.38 26.06 41.00 21.56 1.0 54.3 49.8 211 12.11 24.38 42.56 20.95 表 7 PPA改性沥青DSR温度扫描试验结果
Table 7. DSR temperature scanning test results of PPA modified asphalts
方案编号 不同温度(℃)下的复数剪切模量/kPa 60 66 72 B 2.37 1.09 0.51 P-0.5 3.34 1.64 0.79 P-1.0 6.92 3.86 1.86 P-1.5 9.86 5.29 2.64 S-3 9.92 5.82 3.18 P-0.5+S-3 8.21 4.52 2.32 P-1.0+S-3 14.30 8.22 4.35 P-1.5+S-3 18.20 10.70 6.03 R-15 12.20 7.31 4.66 P-0.5+R-15 12.80 7.89 4.52 P-1.0+R-15 15.40 9.81 5.81 P-1.5+R-15 24.00 15.60 9.59 表 8 PPA改性沥青的复数模量指数
Table 8. Complex modulus indices of PPA modified asphalts
方案编号 复数模量指数 拟合优度 B -6.331 4 0.999 9 P-0.5 -5.465 7 1.000 0 P-1.0 -4.667 5 0.996 4 P-1.5 -4.470 4 0.999 5 S-5 -3.189 3 0.992 5 P-0.5+S-3 -4.402 4 0.999 8 P-1.0+S-3 -3.869 8 0.999 6 P-1.5+S-3 -2.869 8 0.999 2 R-18 -3.127 2 0.997 4 P-0.5+R-15 -3.402 4 0.999 7 P-1.0+R-15 -3.068 1 0.999 9 P-1.5+R-15 -2.736 7 0.999 9 -
[1] 黄彬, 马丽萍, 许文娟. 改性沥青的研究进展[J]. 材料导报, 2010, 24(1): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201001033.htmHUANG Bin, MA Li-ping, XU Wen-jian. Research development of modified asphalt[J]. Materials Review, 2010, 24(1): 137-141. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201001033.htm [2] BAUMGARDNER G L, MASSON J F, HARDEE J R, et al. Polyphosphoric acid modified asphalt: proposed mechanisms[J]. Journal of the Association of Asphalt Paving Technologists, 2005, 74: 283-305. [3] AJIDEH H, RANGEL A, BAHIA H. Can chemical modification of paving asphalts be equated to polymer modification?A laboratory study[J]. Transportation Research Record, 2004(1875): 56-69. [4] KODRAT I, SOHN D, HESP S A M. Comparison of polyphosphoric acid-modified asphalt binders with straight and polymer-modified materials[J]. Transportation Research Record, 2007(1998): 47-55. [5] BENNERT T, MARTIN J V. Polyphosphoric acid in combination with styrene-butadiene-styrene block copolymer[R]. Washington DC: Transportation Research Board, 2012. [6] BALDINO N, GABRIELE D, LUPI F R, et al. Rheological effects on bitumen of polyphosphoric acid (PPA) addition[J]. Construction and Building Materials, 2013, 40: 397-404. doi: 10.1016/j.conbuildmat.2012.11.001 [7] NUNEZ J Y M, DOMINGOS M D I, FAXINA A L. Susceptibility of low-density polyethylene and polyphosphoric acid modified asphalt binders to rutting and fatigue cracking[J]. Construction and Building Materials, 2014, 73: 509-514. doi: 10.1016/j.conbuildmat.2014.10.002 [8] JAFARI M, BABAZADEH A. Evaluation of polyphosphoric acid-modified binders using multiple stress creep and recovery and linear amplitude sweep tests[J]. Road Materials and Pavement Design, 2016, 17(4): 859-876. doi: 10.1080/14680629.2015.1132631 [9] BEHNOOD A, OLEK J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA)[J]. Construction and Building Materials, 2017, 151: 464-478. doi: 10.1016/j.conbuildmat.2017.06.115 [10] SOENEN H, HEYRMAN S, LU Xiao-hui, et al. The interaction of polyphosphoric acid with bituminous binders[C]∥Springer. 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. Berlin: Springer, 2016: 103-114. [11] LIANG Peng, LIANG Ming, FAN Wei-yu, et al. Improving thermo-rheological behavior and compatibility of SBR modified asphalt by addition of polyphosphoric acid (PPA)[J]. Construction and Building Materials, 2017, 139: 183-192. doi: 10.1016/j.conbuildmat.2017.02.065 [12] JASSO M, HAMPL R, VACIN O, et al. Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid[J]. Fuel Processing Technology, 2015, 140: 172-179. doi: 10.1016/j.fuproc.2015.09.002 [13] 李超, 邬迪, 王子豪, 等. 多聚磷酸改性沥青结合料高低温流变特性[J]. 功能材料, 2016, 47(6): 6022-6028. doi: 10.3969/j.issn.1001-9731.2016.06.005LI Chao, WU Di, WANG Zi-hao, et al. High and low temperature rheological properties of polyphosphoric acid modified asphalt binder[J]. Journal of Functional Materials, 2016, 47(6): 6022-6028. (in Chinese). doi: 10.3969/j.issn.1001-9731.2016.06.005 [14] 刘斌清, 仵江涛, 陈华鑫, 等. 多聚磷酸改性沥青的路用性能及机理分析[J]. 深圳大学学报(理工版), 2018, 35(3): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201803008.htmLIU Bin-qing, WU Jiang-tao, CHEN Hua-xin, et al. Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J]. Journal of Shenzhen University (Science and Engineering), 2018, 35(3): 292-298. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201803008.htm [15] 曹晓娟, 张振兴, 郝培文, 等. 多聚磷酸对沥青混合料高低温性能影响研究[J]. 武汉理工大学学报, 2014, 36(6): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201406010.htmCAO Xiao-juan, ZHANG Zhen-xing, HAO Pei-wen, et al. Effect of polyphosphoric acid on the high-and-low temperature property of matrix asphalt mixture[J]. Journal of Wuhan University of Technology, 2014, 36(6): 47-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201406010.htm [16] 周育名, 魏建国, 时松, 等. 多聚磷酸及橡胶粉复合改性沥青性能[J]. 长安大学学报(自然科学版), 2018, 38(5): 9-17. doi: 10.3969/j.issn.1671-8879.2018.05.002ZHOU Yu-ming, WEI Jian-guo, SHI Song, et al. Properties of composite-modified asphalt with polyphosphoric acid and rubber powder[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(5): 9-17. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.05.002 [17] 刘红瑛, 张铭铭, 黄凌辉, 等. 多聚磷酸复合SBS改性沥青流变性能及抗老化特性[J]. 东南大学学报(自然科学版), 2016, 46(6): 1290-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201606030.htmLIU Hong-ying, ZHANG Ming-ming, HUANG Ling-hui, et al. Rheological and anti-aging properties of polyphosphoric acid composite styrene butadiene styrene modified asphalt[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(6): 1290-1295. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201606030.htm [18] 王永宁, 李波, 李鹏, 等. 外加剂对多聚磷酸复配SBS改性沥青性能的影响[J]. 中外公路, 2018, 38(3): 264-268. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201803055.htmWANG Yong-ning, LI Bo, LI Peng, et al. Effect of admixture on properties of polyphosphoric acid compounded SBS modified asphalt[J]. Journal of China and Foreign Highway, 2018, 38(3): 264-268. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201803055.htm [19] 董刚. 多聚磷酸及多聚磷酸/聚合物复合改性沥青的性能和机理分析[D]. 西安: 长安大学, 2018.DONG Gang. Performance and mechanism of asphalt modified with polyphosphoric acid and polyphosphoric acid/polymer[D]. Xi'an: Chang'an University, 2018. (in Chinese). [20] 许实. 多聚磷酸/胶粉复合改性沥青的制备与性能研究[D]. 武汉: 武汉理工大学, 2015.XU Shi. Preparation and properties of polyphosphoric acid/crumb rubber modified bitumen[D]. Wuhan: Wuhan University of Technology, 2015. (in Chinese). [21] 王岚, 王子豪, 李超. 多聚磷酸改性沥青老化前后高温流变性能[J]. 复合材料学报, 2017, 34(7): 1610-1616. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201707029.htmWANG Lan, WANG Zi-hao, LI Chao. High temperature rheological properties of polyphosphoric acid modified asphalt[J]. Acta Materiae Compositae Sinica, 2017, 34(7): 1610-1616. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201707029.htm [22] 张文武. 废胎胶粉改性沥青机理研究[D]. 重庆: 重庆交通大学, 2009.ZHANG Wen-wu. Study on mechanism of crumb rubber modified asphalt[D]. Chongqing: Chongqing Jiaotong University, 2009. (in Chinese). [23] 颜可珍, 陈明, 胡玥. 废胶粉/APAO复合改性沥青性能[J]. 长安大学学报(自然科学版), 2018, 38(2): 1-8. doi: 10.3969/j.issn.1671-8879.2018.02.001YAN Ke-zhen, CHEN Ming, HU Yue. Performance of composite modified asphalt by waste rubber powder and amorphous poly alpha olefin[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(2): 1-8. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.02.001 [24] 丁海波. 多聚磷酸改性沥青及其复配技术研究[D]. 重庆: 重庆交通大学, 2015.DING Hai-bo. Polyphosphoric acid modified asphalt and composite modified technology[D]. Chongqing: Chongqing Jiaotong University, 2015. (in Chinese). [25] 付国志. 多聚磷酸改性沥青改性机理及混合料性能研究[D]. 大连: 大连理工大学, 2017.FU Guo-zhi. Research on modification mechanisms of polyphosphoric acid on asphalt and the performance of polyphosphoric acid modified asphalt mixture[D]. Dalian: Dalian University of Technology, 2017. (in Chinese). [26] 于水泳. TLA沥青和北美岩沥青改性沥青性能研究[D]. 长沙: 长沙理工大学, 2017.YU Shui-yong. Research on performance of modified asphalt of TLA and North American rock bitumen[D]. Changsha: Changsha University of Science and Technology, 2017. (in Chinese). [27] 陈华鑫, 贺孟霜, 纪鑫和, 等. 沥青性能与沥青组分的灰色关联分析[J]. 长安大学学报(自然科学版), 2014, 34(3): 1-6. doi: 10.3969/j.issn.1671-8879.2014.03.001CHEN Hua-xin, HE Meng-shuang, JI Xin-he, et al. Gray correlation analysis of asphalt performance and four fractions[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34(3): 1-6. (in Chinese). doi: 10.3969/j.issn.1671-8879.2014.03.001 [28] FINI E H, AL-QADI I L, YOU Zhan-ping, et al. Partial replacement of asphalt binder with bio-binder: characterisation and modification[J]. International Journal of Pavement Engineering, 2012, 13(6): 515-522. doi: 10.1080/10298436.2011.596937 [29] 王笑风, 曹荣吉. 橡胶沥青的改性机理[J]. 长安大学学报(自然科学版), 2011, 31(2): 6-11. doi: 10.3969/j.issn.1671-8879.2011.02.002WANG Xiao-feng, CAO Rong-ji. Rubber asphalt modification mechanism[J]. Journal of Chang'an University (Natural Science Edition), 2011, 31(2): 6-11. (in Chinese). doi: 10.3969/j.issn.1671-8879.2011.02.002 [30] 张晓亮, 陈华鑫, 张奔, 等. 不同来源橡胶粉对橡胶沥青性能影响[J]. 长安大学学报(自然科学版), 2018, 38(5): 1-8. doi: 10.3969/j.issn.1671-8879.2018.05.001ZHANG Xiao-liang, CHEN Hua-xin, ZHANG Ben, et al. Performance of asphalt binders modified by different crumb rubbers[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(5): 1-8. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.05.001 [31] 王杰, 秦永春, 曾蔚, 等. 厂拌热再生SBS改性沥青混合料抗裂性能[J]. 长安大学学报(自然科学版), 2019, 39(4): 27-34, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201904005.htmWANG Jie, QIN Yong-chun, ZENG Wei, et al. Crack resistance of mixture with reclaimed SBS modified asphalt pavement from central mixing plant[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(4): 27-34, 51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201904005.htm [32] 陈华鑫, 周燕, 王秉纲. SBS改性沥青老化后的动态力学性能[J]. 长安大学学报(自然科学版), 2009, 29(1): 1-5. doi: 10.3321/j.issn:1671-8879.2009.01.001CHEN Hua-xin, ZHOU Yan, WANG Bing-gang. Dynamic mechanics performance of aged SBS modified-asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2009, 29(1): 1-5. (in Chinese). doi: 10.3321/j.issn:1671-8879.2009.01.001 [33] 陈华鑫, 王秉纲. SBS改性沥青车辙因子的改进[J]. 同济大学学报(自然科学版), 2008, 36(10): 1384-1387, 1403. doi: 10.3321/j.issn:0253-374X.2008.10.014CHEN Hua-xin, WANG Bing-gang. Modification of rutting factor of styrene butadiene styrene block copolymer modified-asphalt[J]. Journal of Tongji University (Natural Science), 2008, 36(10): 1384-1387, 1403. (in Chinese). doi: 10.3321/j.issn:0253-374X.2008.10.014 [34] 何亮, 李冠男, 熊汉江, 等. 钢砂SBS改性沥青混凝土裂纹的感应加热自修复性能[J]. 交通运输工程学报, 2018, 18(3): 11-18. http://transport.chd.edu.cn/article/id/201803002HE Liang, LI Guan-nan, XIONG Han-jiang, et al. Induction heating activated self-healing of cracks in SBS modified asphalt concrete adding steel grits[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 11-18. (in Chinese). http://transport.chd.edu.cn/article/id/201803002 [35] 周庆华, 贾渝. 沥青胶结料高温性能试验方法的评价[J]. 长安大学学报(自然科学版), 2008, 28(2): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200802004.htmZHOU Qing-hua, JIA Yu. Evaluation on test methods for high temperature performance of asphalt binders[J]. Journal of Chang'an University (Natural Science Edition), 2008, 28(2): 9-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200802004.htm [36] 郝飞. 多聚磷酸改性沥青及其混合料技术性能研究[D]. 西安: 长安大学, 2012.HAO Fei. Research on the technical characteristic of the polyphosphoric acid modified asphalt and asphalt mixture[D]. Xi'an: Chang'an University, 2012. (in Chinese). [37] BAHIA H U, HANSON D I, ZENG M, et al. Characterization of modified asphalt binders in superpave mix design[R]. Washington DC: Transportation Research Board, 2001. [38] AASHTO-T315-10: 2006, standard method of test for determining the rheological properties of asphalt binder[S]. [39] 张恒龙, 史才军, 余剑英, 等. 多聚磷酸对不同沥青的改性及改性机理研究[J]. 建筑材料学报, 2013, 16(2): 255-260. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201302015.htmZHANG Heng-long, SHI Cai-jun, YU Jian-ying, et al. Modification and its mechanism of different asphalts by polyphosphoric acid[J]. Journal of Building Materials, 2013, 16(2): 255-260. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201302015.htm [40] 张恒龙, 徐国庆, 朱崇政, 等. 长期老化对基质沥青与SBS改性沥青化学组成、形貌及流变性能的影响[J]. 长安大学学报(自然科学版), 2019, 39(2): 10-18, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902003.htmZHANG Heng-long, XU Guo-qing, ZHU Chong-zheng, et al. Influence of long-term aging on chemical constitution, morphology and rheology of base and SBS modified asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(2): 10-18, 56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902003.htm [41] 党燕妮. 基于流变的生物炭改性沥青性能研究[D]. 西安: 长安大学, 2017.DANG Yan-ni. Research on the properties of bio-char modified asphalt based on rheology[D]. Xi'an: Chang'an University, 2017. (in Chinese). [42] 孙敏, 郑木莲, 毕玉峰, 等. 聚氨酯改性沥青改性机理和性能[J]. 交通运输工程学报, 2019, 19(2): 49-58. http://transport.chd.edu.cn/article/id/201902005SUN Min, ZHENG Mu-lian, BI Yu-feng, et al. Modification mechanism and performance of polyurethane modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 49-58. (in Chinese). http://transport.chd.edu.cn/article/id/201902005 -