Mechanism and influencing factors of mud pumping in railway subgrade
Article Text (Baidu Translation)
-
摘要: 为研究铁路路基翻浆冒泥的发生机理, 进行了大量调查, 总结了目前铁路2种较易发生翻浆冒泥的路基模型; 建立了循环列车荷载作用下土中振动孔压增长与消散规律的控制微分方程, 计算了土中孔压比的增长规律, 判断其是否会液化而引发翻浆冒泥; 分析了普铁和高铁列车运行速度、列车轴质量、土的固结系数、固结应力比和围压对翻浆冒泥的影响。分析结果表明: 路基在列车荷载和水的持续共同作用下, 土中孔压比随列车荷载振次的增加而迅速增大, 但是其增长速度处于持续减小的状态, 最终趋于稳定; 土中孔压比随深度的增加呈先增大后减小的变化形式, 且其最大值通常在距土层表面0.6 m处; 列车运行速度越大, 土中孔压比增长越快, 越容易发生翻浆冒泥, 当速度为200 km·h-1时, 普铁路基土发生翻浆冒泥所需振次为高铁路基的19%;列车轴质量越大, 土中孔压比增长越快, 当轴质量为18 t时, 普铁路基土液化所需振次为高铁的24%;增大土的固结系数能降低孔压比的增速, 路基土达到液化所需振次就越多, 从而越难发生翻浆冒泥; 等压固结时路基土比偏压时更容易发生液化而形成翻浆冒泥; 增大围压能够降低孔压比的增速, 路基土也就更难发生液化, 发生翻浆冒泥的可能性就越小; 普铁路基发生翻浆冒泥的可能性比高铁线路中更高。Abstract: In order to study the mechanism of mud pumping in railway subgrade, many investigations were conducted and two subgrade models that prone to mud pumping in current railways were summarized. A governing differential equation for the description of the increase and dissipation rule of vibration pore-water pressure in subsoil under cyclic train load was established. The growth law of pore-water pressure ratio in subsoil was calculated, which accordingly decided whether the subsoil was liquefied to cause the mud pumping. The effects of different parameters, such as train operation speeds, axle weighings of train, consolidation coefficients of subsoil, consolidation stress ratios and confining pressures on mud pumping, were analyzed for the general-speed and high-speed railways. Analysis result indicates that when the subgrade is under the continuous combined action of train load and water, the pore-water pressure ratio in subsoil grows quickly with the increase of vibration number of train load, but its growth rate continuously decreases and its value stabilize in final. With the increase of the depth, the change pattern of the pore-water pressure ratio in subsoil grows first and then falls. Its value is normally largest at 0.6 m under the surface of subsoil. The faster the train speed is, the quicker the pore-water pressure ratio grows, and the simpler the mud pumping takes place. When the train speed is 200 km·h-1, the vibration numbers for mud pumping to appear in subsoil under general-speed railway are 19% of that under high-speed railway. The pore-water pressure ratio grows quicker as the axle weighing of train increases. When the axle weighing is 18 t, the vibration number for mud pumping to appear in subsoil under general-speed railway is 24% of that under high-speed railway. Increasing the consolidation coefficient of subsoil can reduce the growth rate of the pore-water pressure ratio, and the subsoil will need more vibration number to liquefy, which makes it more difficult for mud pumping to appear. The subsoil is easier to liquefy under isotropic consolidation than that under anisotropic consolidation, which leads to mud pumping. Increasing the confining pressure can reduce the growth rate of pore-water pressure ratio, which makes it more difficult for subsoil to liquefy and less likely for mud pumping to appear. It is more likely for mud pumping to appear in general-speed railway than in high-speed railway.
-
Key words:
- railway engineering /
- mud pumping /
- subgrade model /
- train load /
- vibration pore-water pressure /
- influencing factor
-
-
[1] 刘朝军. 铁路路基翻浆冒泥整治新材料及施工工艺研究[D]. 成都: 西南交通大学, 2016.LIU Chao-jun. Research on new materials and construction technology of railway subgrade mud pumping[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese). [2] 郭建湖. 运营高铁路基变形病害微变形扰动整治技术[J]. 铁道工程学报, 2018, 35(6): 26-30. doi: 10.3969/j.issn.1006-2106.2018.06.006GUO Jian-hu. Micro-deformation and micro-disturbance treatment technique for deformation disease of operating high speed railway subgrade[J]. Journal of Railway Engineering Society, 2018, 35(6): 26-30. (in Chinese). doi: 10.3969/j.issn.1006-2106.2018.06.006 [3] 聂如松, 冷伍明, 粟雨, 等. 基床翻浆冒泥土的物理力学性质[J]. 西南交通大学学报, 2018, 53(2): 286-295. doi: 10.3969/j.issn.0258-2724.2018.02.010NIE Ru-song, LENG Wu-ming, SU Yu, et al. Physical and mechanical properties of mud pumping soils in railway subgrade bed[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 286-295. (in Chinese). doi: 10.3969/j.issn.0258-2724.2018.02.010 [4] HUANG Jun-jie, SU Qian, WANG Wei, et al. Field investigation and full-scale model testing of mud pumping and its effect on the dynamic properties of the slab track-subgrade interface[J]. Journal of Rail and Rapid Transit, 2018, 233(8): 802-816. [5] HUANG Jun-jie, SU Qian, WANG Wei, et al. Vibration behavior and reinforcement effect analysis of the slab track-subgrade with mud pumping under cyclic dynamic loading: full-scale model tests[J]. Shock and Vibration, 2018, 2018: 1-14. [6] CAI Xiao-pei, CAI Xiang-hui, LIU Ke-xu, et al. Study on mud pumping mechanism of subgrade surface layer in slab ballastless track zone[J]. Sensors and Transducers, 2015, 186(3): 154-160. [7] HUDSON A, WATSON G, LE PEN L, et al. Remediation of mud pumping on a ballasted railway track[J]. Procedia Engineering, 2016, 143: 1043-1050. doi: 10.1016/j.proeng.2016.06.103 [8] 杨志浩. 重载铁路翻浆冒泥病害机理研究[D]. 石家庄: 石家庄铁道大学, 2015.YANG Zhi-hao. Research on mechanism of mud pumping of heavy haul-railways[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2015. (in Chinese). [9] 刘亭, 苏谦, 赵文辉, 等. 板式无砟轨道路基翻浆整治效果研究[J]. 铁道学报, 2015, 37(12): 88-95. doi: 10.3969/j.issn.1001-8360.2015.12.014LIU Ting, SU Qian, ZHAO Wen-hui, et al. Study on injection-repaired and reinforcement effects of subgrade frost boiling under ballastless track[J]. Journal of the China Railway Society, 2015, 37(12): 88-95. (in Chinese). doi: 10.3969/j.issn.1001-8360.2015.12.014 [10] LIU Shu-shu, HUANG Hai, QIU Tong, et al. Characterization of ballast particle movement at mud spot[J]. Journal of Materials in Civil Engineering, 2018, 31(1): 1-11. [11] SU Yu, LENG Wu-ming, TENG Ji-dong, et al. Analysis of subgrade soil mud pumping model[J]. Electronic Journal of Geotechnical Engineering, 2016, 21(24): 7667-7678. [12] 杨新安. 论铁路路基翻浆冒泥病害与发生机理[J]. 湘潭矿业学院学报, 2002, 17(4): 60-63. doi: 10.3969/j.issn.1672-9102.2002.04.016YANG Xin-an. Study on the mud pumping in railway subgrade and its mechanism[J]. Journal of Xiangtan Mining Institute, 2002, 17(4): 60-63. (in Chinese). doi: 10.3969/j.issn.1672-9102.2002.04.016 [13] DUONG T V, CUI Y J, TANG A M, et al. Investigating the mud pumping and interlayer creation phenomena in railway sub-structure[J]. Engineering Geology, 2014, 171: 45-58. doi: 10.1016/j.enggeo.2013.12.016 [14] DUONG T V, CUI Y J, TANG A M, et al. A physical model for studying the migration of fine particles in railway substructure[J]. Geotechnical Testing Journal, 2014, 37(5): 895-906. [15] CHAWLA S, SHAHU J T. Reinforcement and mud-pumping benefits of geosynthetics in railway tracks: model tests[J]. Geotextiles and Geomembranes, 2016, 44(3): 366-380. doi: 10.1016/j.geotexmem.2016.01.005 [16] 聂如松, 冷伍明, 杨奇. 既有重载铁路路基检测试验与状态评估[J]. 铁道工程学报, 2014, 31(11): 20-24. doi: 10.3969/j.issn.1006-2106.2014.11.005NIE Ru-song, LENG Wu-ming, YANG Qi. Detection test and condition assessment on existing heavy haul railway subgrade[J]. Journal of Railway Engineering Society, 2014, 31(11): 20-24. (in Chinese). doi: 10.3969/j.issn.1006-2106.2014.11.005 [17] 聂如松, 冷伍明, 杨奇. 铁路路基质量检测试验对比分析[J]. 铁道学报, 2015, 37(1): 91-96. doi: 10.3969/j.issn.1001-8360.2015.01.014NIE Ru-song, LENG Wu-ming, YANG Qi. Comparison and analysis on railway subgrade quality detection tests[J]. Journal of the China Railway Society, 2015, 37(1): 91-96. (in Chinese). doi: 10.3969/j.issn.1001-8360.2015.01.014 [18] 贡照华. 全面整治翻浆冒泥病害的探讨与实践[J]. 铁道建筑, 2001(6): 16-18. doi: 10.3969/j.issn.1003-1995.2001.06.006GONG Zhao-hua. Discussion and practice on comprehensive remediation of mud pumping disease[J]. Railway Engineering, 2001(6): 16-18. (in Chinese). doi: 10.3969/j.issn.1003-1995.2001.06.006 [19] 王卓贤. 路基翻浆冒泥浅析[J]. 铁道建筑, 1985(9): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201912023.htmWANG Zhuo-xian. Analysis of mud pumping in railway subgrade[J]. Railway Engineering, 1985(9): 5-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201912023.htm [20] 黄兴政, 方理刚, 段靓靓. 铁路路基翻浆冒泥的列车动力学研究[J]. 路基工程, 2008(5): 101-103. doi: 10.3969/j.issn.1003-8825.2008.05.051HUANG Xing-zheng, FANG Li-gang, DUAN Liang-liang. Research on train kinetics of mud pumping in railway embankment[J]. Subgrade Engineering, 2008(5): 101-103. (in Chinese). doi: 10.3969/j.issn.1003-8825.2008.05.051 [21] 王亚东. 站场翻浆冒泥原因分析及整治经验[J]. 路基工程, 2000(5): 65-66. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC200005025.htmWANG Ya-dong. Cause analysis and treatment experience of mud pumping in station yard[J]. Subgrade Engineering, 2000(5): 65-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC200005025.htm [22] 段靓靓, 方理刚, 梅文勇. 铁路路基翻浆冒泥的机理分析和整治研究[J]. 路基工程, 2005(6): 80-82. doi: 10.3969/j.issn.1003-8825.2005.06.030DUAN Liang-liang, FANG Li-gang, MEI Wen-yong. Mechanism analysis and treatment of mud pumping in railway subgrade[J]. Subgrade Engineering, 2005(6): 80-82. (in Chinese). doi: 10.3969/j.issn.1003-8825.2005.06.030 [23] 王鑫. 无砟轨道路基翻浆冒泥整治用聚氨酯灌浆材料的研制[J]. 中国胶粘剂, 2017, 26(5): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201705012.htmWANG Xin. Study on preparing polyurethane grouting material for renovating mud pumping of ballastless track subgrade[J]. China Adhesives, 2017, 26(5): 42-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201705012.htm [24] 杜攀峰, 廖立坚, 杨新安. 铁路路基病害的智能识别[J]. 铁道学报, 2010, 32(3): 142-146. doi: 10.3969/j.issn.1001-8360.2010.03.025DU Pan-feng, LIAO Li-jian, YANG Xin-an. Intelligent recognition of defects in railway subgrade[J]. Journal of the China Railway Society, 2010, 32(3): 142-146. (in Chinese). doi: 10.3969/j.issn.1001-8360.2010.03.025 [25] 冷伍明, 粟雨, 滕继东, 等. 易发生翻浆冒泥的细粒土物理状态指标分析与评判[J]. 铁道学报, 2018, 40(1): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201801020.htmLENG Wu-ming, SU Yu, TENG Ji-dong, et al. Analysis and evaluation on physical characteristics of fine-grained soils prone to mud pumping[J]. Journal of the China Railway Society, 2018, 40(1): 116-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201801020.htm [26] 蒋红光. 高速铁路板式轨道结构-路基动力相互作用及累积沉降研究[D]. 杭州: 浙江大学, 2014.JIANG Hong-guang. Dynamic interaction of slab track structure-subgrade system and accumulative settlement in high-speed railways[D]. Hangzhou: Zhejiang University, 2014. (in Chinese). [27] HYODO M, YASUHARA K, HIRAO K. Prediction of clay behaviour in undrained and partially drained cyclic triaxial tests[J]. Soils and Foundations, 1992, 32(4): 117-127. doi: 10.3208/sandf1972.32.4_117 [28] 张建民, 谢定义. 饱和砂土振动孔隙水压力增长的实用算法[J]. 水利学报, 1991(8): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199108006.htmZHANG Jian-min, XIE Ding-yi. A practical algorithm for vibration pore water pressure growth of saturated sand[J]. Journal of Hydraulic Engineering, 1991(8): 45-51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199108006.htm [29] 栾茂田, 钱令希. 层状饱和砂土振动孔隙水压力扩散与消散简化解法[J]. 大连理工大学学报, 1995, 35(2): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG502.018.htmLUAN Mao-tian, QIAN Ling-xi. Simplified procedure for estimating shaking-induced pore-water pressure dissipation of layered saturated sands[J]. Journal of Dalian University of Technology, 1995, 35(2): 216-221. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG502.018.htm [30] 王启云, 张丙强, 赵卫华, 等. 高速铁路无砟轨道路基动应力频谱特性研究[J]. 铁道科学与工程学报, 2017, 14(11): 2299-2308. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201711005.htmWANG Qi-yun, ZHANG Bing-qiang, ZHAO Wei-hua, et al. Research on dynamic stress frequency spectrum of ballastless track subgrade of high speed railway[J]. Journal of Railway Science and Engineering, 2017, 14(11): 2299-2308. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201711005.htm [31] 边学成, 卢文博, 蒋红光, 等. 粉土循环累积应变和残余动模量的试验研究[J]. 岩土力学, 2013, 34(4): 974-980. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304012.htmBIAN Xue-cheng, LU Wen-bo, JIANG Hong-guang, et al. Experimental study of cumulative axial strain and residual dynamic modulus of silt soil[J]. Rock and Soil Mechanics, 2013, 34(4): 974-980. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304012.htm [32] 韩自力, 张千里. 既有线提速路基动应力分析[J]. 中国铁道科学, 2005, 26(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200505000.htmHAN Zi-li, ZHANG Qian-li. Dynamic stress analysis on speed-increase subgrade of existing railway[J]. China Railway Science, 2005, 26(5): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200505000.htm [33] 曾长女, 刘汉龙, 丰土根, 等. 饱和粉土孔隙水压力性状试验研究[J]. 岩土力学, 2005, 26(12): 1963-1966. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200512021.htmZENG Chang-nv, LIU Han-long, FENG Tu-gen, et al. Test study on pore water pressure mode of saturated silt[J]. Rock and Soil Mechanics, 2005, 26(12): 1963-1966. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200512021.htm -