Vibration comfort of mining dump truck based on particle damping
-
摘要: 采用颗粒阻尼技术对驾驶室座椅进行减振, 提高其振动舒适性; 选择与驾驶室底板和座椅连接的基座作为颗粒阻尼器, 建立了基座阻尼器的离散元模型; 模拟整车在发动机最高转速下的振动环境, 针对不同阻尼器方案(颗粒材质、阻尼器分层数、颗粒粒径和颗粒填充率), 通过离散元仿真计算逐一进行耗能分析, 得到了最优方案; 对实物模型进行试验, 对比原结构与增加阻尼颗粒后基座的加速度均方根, 确认减振效果, 将试验与仿真计算结果进行趋势对比, 验证了离散元模型的可行性; 在实际样车试验中应用最优方案, 采集了座椅在发动机不同转速下的响应, 进行了数据分析; 针对最高转速的工况, 进行了人体振动暴露的舒适性分析。研究结果表明: 从频域图的单峰最大值来看, 减振前座椅最大加速度响应出现在425 Hz处的0.643 4 m·s-2, 安装颗粒阻尼器后最大值为25 Hz处的0.087 5 m·s-2; 从时域图来看, 当发动机转速分别为750、1 110、1 470、1 830、2 200 r·min-1时, 安装颗粒阻尼器后座椅加速度均方根综合减幅分别达到24.2%、29.6%、34.7%、39.2%、46.0%, 发动机转速越高, 颗粒阻尼器的减振效果越好; 安装颗粒阻尼器后各频段舒适性界限时长均有大幅度增加, 频段为3.1和4.0 Hz时, 安装颗粒阻尼器后舒适性界限时长均提升了1.50倍, 为20 Hz时, 安装颗粒阻尼器后舒适性界限时长提升了1.57倍。Abstract: Particle damping technology was used to reduce the vibration of the cab seat and improve its vibration comfort. The plinth between the cab floor and the seat was selected as a particle damper, and the discrete element model of the plinth damper was established. By simulating the vibration environment of the complete truck at the highest engine rotate speed, for different damper schemes(particle material, damper layer number, particle size, and particle filling rate), the energy dissipation based on the discrete element model was analyzed, and the optimal solution was obtained. The physical model was tested, and the root mean square values of the plinth acceleration of the original structure and the structure installed particle damper were compared, and the vibration reduction effect was confirmed. The feasibility of the discrete element model was verified by comparing the simulation results with the test results. The optimal scheme was applied in the test of the sample truck, the responses of the seat under different engine rotate speeds were collected and analyzed. At the highest engine rotate speed, the comfort analysis of human body vibration exposure was performed. Research result shows that based on the peak value of the time domain chart, the maximum acceleration response of the seat occurs at 425 Hz, which is 0.643 4 m·s-2 before vibration reduction. The maximum value is 0.087 5 m·s-2 occurs at 25 Hz after particle damper was installed. Based on the time domain chart, when the engine rotate speed is 750, 1 110, 1 470, 1 830, and 2 200 r·min-1, respectively, after particle damper was installed, the acceleration root mean square values reduce by 24.2%, 29.6%, 34.7%, 39.2%, and 46.0%, respectively. The higher the engine rotate speed, the better the vibration reduction effect of particle damper. After installing the particle damper, the comfort durations at each frequency significantly increase. At 3.1 and 4.0 Hz, the comfort limit durations increase by 1.50 times after the particle damper was used. At 20 Hz, the comfort limit duration increases by 1.57 times after the particle damper was used.
-
Key words:
- mining dump truck /
- particle damping /
- discrete element /
- vibration reduction /
- vibration comfort
-
表 1 各测点位置加速度均方根
Table 1. Acceleration root mean squares of each measuring point positions
测点 位置 加速度均方根/(m·s-2) 纵向 横向 垂向 1 发动机下方 42.6 147.2 232.4 2 发动机支撑架前方 38.5 66.5 29.3 3 车架后支梁 11.2 12.9 11.3 4 车架后方驾驶室旁 10.3 11.6 9.0 5 驾驶室底板 4.2 4.5 2.3 表 2 颗粒材质属性
Table 2. Particle material properties
颗粒材质 密度/(g·mm-3) 弹性模量/GPa 泊松比 恢复系数 不锈钢1 7.78 200 0.28 0.65 不锈钢2 7.80 206 0.30 0.74 不锈钢3 7.80 228 0.30 0.79 表 3 不同阻尼器直径与颗粒粒径比值方案的B值
Table 3. B values of different ratio schemes of damper diameter to particle size
A 颗粒平均接触力/N 颗粒接触数 B/N 6.0 0.770 3 30 23.109 0 8.0 0.233 6 61 14.249 6 9.0 0.142 8 52 7.425 6 10.0 0.116 6 91 10.610 6 10.5 0.102 7 162 16.637 4 11.0 0.174 1 236 41.087 6 11.5 0.088 0 254 22.352 0 12.0 0.084 8 286 24.252 8 14.0 0.047 8 384 18.355 2 15.0 0.026 5 541 14.336 5 表 4 颗粒不同材质下基座模型加速度均方根
Table 4. Acceleration root mean squares of plinth model with different particle materials
方案 各方向加速度均方根/(m·s-2) 纵向 横向 垂向 无阻尼颗粒 7.889 2.386 5.911 不锈钢1颗粒 5.148 1.794 5.047 不锈钢2颗粒 4.726 1.447 4.635 不锈钢3颗粒 4.427 1.324 4.257 表 5 阻尼器不同分层方案基座模型加速度均方根
Table 5. Acceleration root mean squares of plinth model with different damper layer number schemes
方案 各方向加速度均方根/(m·s-2) 纵向 横向 垂向 无阻尼颗粒 7.889 2.386 5.911 阻尼器不分层 5.148 1.794 5.047 阻尼器分2层 4.548 1.584 4.574 阻尼器分3层 4.046 1.476 3.957 阻尼器分4层 4.125 1.504 4.087 阻尼器分5层 5.274 1.814 5.157 表 6 安装颗粒阻尼器前后座椅加速度均方根对比
Table 6. Comparison of acceleration root mean squares of seat before and after installing particle damper
表 7 垂直方向各频段舒适性界限时长
Table 7. Comfort durations at each frequency in vertical direction
方案 3.15 Hz 4.00 Hz 20.00 Hz 加速度有效值/(m·s-2) 舒适性界限时长/h 加速度有效值/(m·s-2) 舒适性界限时长/h 加速度有效值/(m·s-2) 舒适性界限时长/h 未安装颗粒阻尼器 0.28 2 0.24 2 0.26 7 安装颗粒阻尼器 0.18 5 0.15 5 0.14 18 -
[1] 张瑞, 樊新宇, 冯贤平, 等. 现代工程机械驾驶室中的人性化设计[J]. 建筑机械, 2013(9): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201309019.htmZHANG Rui, FAN Xin-yu, FENG Xian-ping, et al. Humanity design on the cab of modern construction machinery[J]. Construction Machinery, 2013(9): 77-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201309019.htm [2] FRIMPONG S, GALECKI G, CHANG Zong-yu. Dump truck operator vibration control in high-impact shovel loading operations[J]. International Journal of Mining Reclamation Environment, 2011, 25(3): 213-225. doi: 10.1080/17480930.2011.595090 [3] 张沙, 谷正气, 徐亚, 等. 行驶于矿山软土路面的自卸车的减振系统协同优化[J]. 汽车工程, 2017, 39(6): 702-709. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201706017.htmZHANG Sha, GU Zheng-qi, XU Ya, et al. Collaborative optimization on the vibration attenuation system of dump truck driving on mine soil road[J]. Automotive Engineering, 2017, 39(6): 702-709. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201706017.htm [4] 杜明龙. 工程机械驾驶室减振分析及研究[D]. 济南: 山东大学, 2011.DU Ming-long. Vibration reduction research of construction machinery's cab[D]. Jinan: Shandong University, 2011. (in Chinese). [5] 张伟, 张文明, 郭苗苗. 矿用自卸车发动机减振橡胶垫的隔振设计[J]. 矿山机械, 2013, 41(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201306015.htmZHANG Wei, ZHANG Wen-ming, GUO Miao-miao. Vibration isolation design on rubber damping in engine of mining dump truck[J]. Mining Processing Equipment, 2013, 41(5): 41-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201306015.htm [6] 史正文, 孙小娟. 工程机械驾驶室液阻橡胶隔振器动力学仿真与试验研究[J]. 工程机械, 2014, 45(11): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA201411006.htmSHI Zheng-wen, SUN Xiao-juan. Dynamic simulation and test study on hydraulically damped rubber mount for construction machinery cabs[J]. Construction Machinery and Equipment, 2014, 45(11): 24-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA201411006.htm [7] 王勇, 李舜酩, 程春. 基于准零刚度隔振器的车-座椅-人耦合模型动态特性研究[J]. 振动与冲击, 2016, 35(15): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201615033.htmWANG Yong, LI Shun-ming, CHENG Chun. Dynamic characteristics of a vehicle-seat-human coupled model with quasi-zero-stiffness isolators[J]. Journal of Vibration and Shock, 2016, 35(15): 190-196. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201615033.htm [8] WANG Yong, LI Shun-ming, CHENG Chun, et al. Adaptive control of a vehicle-seat-human coupled model using quasi-zero-stiffness vibration isolator as seat suspension[J]. Journal of Mechanical Science Technology, 2018, 32(7): 2973-2985. doi: 10.1007/s12206-018-0601-2 [9] 刘杉, 孙琪, 侯力文, 等. 基于加速粒子群算法的车辆座椅悬架最优控制研究[J]. 噪声与振动控制, 2018, 38(3): 49-54, 59. doi: 10.3969/j.issn.1006-1355.2018.03.009LIU Shan, SUN Qi, HOU Li-wen, et al. Optimal control of active seat suspension systems using acceleration based particle swarm optimization[J]. Noise and Vibration Control, 2018, 38(3): 49-54, 59. (in Chinese). doi: 10.3969/j.issn.1006-1355.2018.03.009 [10] 寇发荣. 车辆磁流变半主动座椅悬架的研制[J]. 振动与冲击, 2016, 35(8): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608038.htmKOU Fa-rong. Development of vehicle semi-active seat suspension with magneto-rheological damper[J]. Journal of Vibration and Shock, 2016, 35(8): 239-244. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608038.htm [11] 赵强, 冯海生, 李昌. 车辆磁流变座椅悬架模糊控制的研究[J]. 森林工程, 2011, 27(1): 51-55. doi: 10.3969/j.issn.1001-005X.2011.01.014ZHAO Qiang, FENG Hai-sheng, LI Chang. Study on fuzzy control of vehicle magneto-rheological seat suspension[J]. Forest Engineering, 2011, 27(1): 51-55. (in Chinese). doi: 10.3969/j.issn.1001-005X.2011.01.014 [12] 胡国良, 刘前结, 李刚, 等. 磁流变阻尼器参数对座椅悬架系统减振效果的影响[J]. 交通运输工程学报, 2018, 18(1): 101-110. doi: 10.3969/j.issn.1671-1637.2018.01.010HU Guo-liang, LIU Qian-jie, LI Gang, et al. Influence of parameters of magnetorheological damper on vibration attenuation effect of seat suspension system[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 101-110. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.010 [13] NING Dong-hong, SUN Shuai-shuai, DU Hai-ping, et al. Integrated active and semi-active control for seat suspension of a heavy duty vehicle[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(1): 9-100. [14] POPPLEWELL N, SEMERCIGIL S E. Performance of the beanbag impact damper for a sinusoidal external force[J]. Journal of Sound and Vibration, 1989, 133(2): 193-223. doi: 10.1016/0022-460X(89)90922-X [15] TOMLINSON G R, LIU W. The phenomenological behaviour of particle dampers[J]. Materials Science Forum, 2003, 440/441: 279-286. doi: 10.4028/www.scientific.net/MSF.440-441.279 [16] 鲁正, 吕西林, 闫维明. 颗粒阻尼技术研究综述[J]. 振动与冲击, 2013, 32(7): 1-7. doi: 10.3969/j.issn.1000-3835.2013.07.001LU Zheng, LYU Xi-lin, YAN Wei-ming. A survey of particle damping technology[J]. Journal of Vibration and Shock, 2013, 32(7): 1-7. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.07.001 [17] YAO Bing, CHEN Qian, XIANG Hong-ying, et al. Experimental and theoretical investigation on dynamic properties of tuned particle damper[J]. International Journal of Mechanical Sciences, 2014, 80: 122-130. doi: 10.1016/j.ijmecsci.2014.01.009 [18] SHAH B M, NUDELL J J, KAO K R, et al. Semi-active particle-based damping systems controlled by magnetic fields[J]. Journal of Sound and Vibration, 2011, 330(2): 182-193. doi: 10.1016/j.jsv.2010.08.009 [19] KAPUR P C, GUTSCHE O, FUERSTENAU D W. Comminution of single particles in a rigidly-mounted roll mill. Part 3: particle interaction and energy dissipation[J]. Powder Technology, 1993, 76(3): 271-276. doi: 10.1016/S0032-5910(05)80008-7 [20] DRAGOMIR S C, SINNOTT M, SEMERCIGIL E S, et al. Energy dissipation characteristics of particle sloshing in a rotating cylinder[J]. Journal of Sound Vibration, 2012, 331(5): 963-973. [21] 李健, 刘璐, 严颖, 等. 基于离散单元法的颗粒阻尼耗能减振特性研究[J]. 计算力学学报, 2013, 30(5): 664-670. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305012.htmLI Jian, LIU Lu, YAN Ying, et al. Study on energy dissipation and vibration reduction characteristics of particle based on DEM[J]. Chinese Journal of Computational Mechanics, 2013, 30(5): 664-670. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305012.htm [22] 方江龙, 王小鹏, 陈天宁, 等. 动理论在预测非阻塞性颗粒阻尼能量耗散中的应用[J]. 西安交通大学学报, 2015, 49(4): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201504003.htmFANG Jiang-long, WANG Xiao-peng, CHEN Tian-ning, et al. Application of kinetic theory to quantitative analysis model of non-obstructive particle damping[J]. Journal of Xi'an Jiaotong University, 2015, 49(4): 12-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201504003.htm [23] LEI Xiao-fei, WU Cheng-jun. Investigating the optimal damping performance of a composite dynamic vibration absorber with particle damping[J]. Journal of Vibration Engineering Technologies, 2018, 6(6): 503-511. [24] SANCHEZ M, CARLEVARO C M. Nonlinear dynamic analysis of an optimal particle damper[J]. Journal of Sound Vibration, 2013, 332(8): 2070-2080. [25] 夏兆旺, 单颖春, 刘献栋. 基于悬臂梁的颗粒阻尼实验[J]. 航空动力学报, 2007, 22(10): 1737-1741. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200710025.htmXIA Zhao-wang, SHAN Ying-chun, LIU Xian-dong. Experimental research on particle damping of cantilever beam[J]. Journal of Aerospace Power, 2007, 22(10): 1737-1741. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200710025.htm [26] LU Zheng, CHEN Xiao-yi, ZHANG Ding-chang, et al. Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation[J]. Earthquake Engineering Structural Dynamics, 2016, 46: 697-714. [27] 闫维明, 王瑾, 许维炳. 基于单自由度结构的颗粒阻尼减振机理试验研究[J]. 土木工程学报, 2014, 47(增1): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2014S1014.htmYAN Wei-ming, WANG Jin, XU Wei-bing. Experimental research on the control mechanism of particle damping based on a single degree of freedom structure[J]. China Civil Engineering Journal, 2014, 47(S1): 76-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2014S1014.htm [28] SALUENA C, POSCHEL T, ESIPOV S E. Dissipative properties of vibrated granular materials[J]. Physical Review E, 1999, 59(4): 4422-4425. [29] MAO Kuan-min, WANG M Y, XU Zhi-wei, et al. DEM simulation of particle damping[J]. Powder Technology, 2004, 142(2/3): 154-165. [30] XIAO Wang-qiang, CHEN Zhi-wei, PAN Tian-long, et al. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load[J]. Mechanical Systems Signal Processing, 2018, 98: 1116-1131. [31] LU Zheng, LU Xi-lin, MASRI S F. Studies of the performance of particle dampers under dynamic loads[J]. Journal of Sound Vibration, 2010, 329(26): 5415-5433. [32] 支开印, 周军, 李连刚, 等. 装载机座椅振动舒适性分析与评价方法[J]. 工程机械, 2010, 41(8): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA201008005.htmZHI Kai-yin, ZHOU Jun, LI Lian-gang, et al. Method to analysis and evaluate vibration comfort for loaders seats[J]. Construction Machinery and Equipment, 2010, 41(8): 13-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA201008005.htm -