Effect of service temperature on static failure of BFRP/aluminum alloy adhesive joints
-
摘要: 在车辆轻量化设计过程中, 为了预测BFRP/铝合金粘接接头在服役温度下的静态失效行为, 加工了处于拉应力、剪应力与拉剪组合应力状态的粘接接头, 根据车辆服役温度特点, 选取-40℃、-10℃、20℃、50℃、80℃五个温度测点, 通过准静态拉伸试验, 得到不同应力状态下接头失效强度随温度的变化规律, 分析了粘接接头失效形式和失效准则; 基于粘接接头在不同温度下的拉、剪应力, 建立了接头的二次应力失效准则方程, 对不同温度下的接头强度进行失效预测。分析结果表明: 粘接接头的失效强度受温度的影响明显, 随温度升高, 失效强度减小; 粘接接头中剪应力和拉应力的不同占比也会对接头失效强度造成一定的影响, 随着剪应力比例增大, 温度升高使接头失效强度下降更明显; 相比于低温-40℃, 高温80℃时的拉伸接头与剪切接头失效强度的下降幅度分别为47.77%与61.49%;随着温度升高, 粘接剂的失效应力和杨氏模量逐渐减小, 而失效应变逐渐增大, 说明温度很大程度上影响了粘接剂的力学性能; 粘接接头失效形式为内聚和纤维撕裂的混合失效, 拉应力作用下接头更容易发生纤维撕裂, 并且随温度升高, 纤维撕裂面积减小, 因此, 为了防止纤维撕裂, 需要避免粘接接头受拉应力作用; 粘接接头在不同温度下的二次应力失效准则曲线拟合精度均在0.957以上, 并绘制了失效准则响应曲面, 直观反映了粘接接头失效强度在车辆服役温度下的变化规律。Abstract: In order to predict the static failure behavior of BFRP/aluminum alloy adhesive joint under service temperature in the process of vehicle lightweight design, the adhesive joints under three different stress states were manufactured, including tensile stress state, shear stress state and combined tension-shear stress state, five temperature measuring points of-40 ℃, -10 ℃, 20 ℃, 50 ℃ and 80 ℃ were selected according to the characteristics of vehicle service temperature, the change rules of adhesive joint failure strength with service temperature under different stress states were obtained based on the quasi-static tensile test, and the failure forms and failure criteria of adhesive joints were analyzed. Based on the tensile and shear stresses of adhesive joints at different service temperatures, the quadratic stress failure criterion equations of the joints were established to predict the failure strengths of the joints at different service temperatures. Analysis result shows that the failure strength of the adhesive joint is obviously affected by the service temperature, and the failure strength decreases with the increase of the service temperature. The different proportions of shear stress and tensile stress in the adhesive joint will also have a certain impact on the failure strength of the joint, and the failure strength of the joint will decrease more obviously with the increase of the service temperature at greater shear stress proportion. Compared with the service temperature-40 ℃, the failure strengths of tensile and shear joints decrease by 47.77% and 61.49% at 80 ℃, respectively. With the increase of the service temperature, the failure stress and Young's modulus of the adhesive decrease gradually, while the failure strain increases gradually, which shows that the service temperature affects the mechanical properties of the adhesive greatly. The failure mode of the adhesive joint is the mixture failure of cohesion and fiber tearing. Under the action of tensile stress, the joint is more prone to fiber tearing. With the increase of the service temperature, the fiber tearing area decreases. In order to prevent fiber tearing, it is necessary to avoid the effect of tensile stress on the adhesive joint. The fitting accuracies of the quadratic stress failure criterion curves of the adhesive joints at different service temperatures are more than 0.957, therefore, the drawn response surface of failure criterion can reflect the change rule of failure strength of the adhesive joint at the service temperature of vehicle.
-
表 1 6061铝合金材料参数
Table 1. 6061 aluminum alloy material parameters
密度/(kg·m-3) 泊松比 杨氏模量/GPa 2 730 0.33 71 表 2 材料属性参数
Table 2. Material property parameters
材料 杨氏模量/MPa 伸长率/% 拉伸强度/MPa BFRP 122 1.7 1 452 Plexus©MA832 483~689 30~60 24.1~27.6 -
[1] RIBEIRO M L, TITA V, VANDEPITTE D. A new damage model for composite laminates[J]. Composite Structures, 2012, 94(2): 635-642. doi: 10.1016/j.compstruct.2011.08.031 [2] FIORE V, ALAGNA F, DI BELLA G, et al. On the mechanical behavior of BFRP to aluminum AA6086 mixed joints[J]. Composites Part B: Engineering, 2013, 48: 79-87. doi: 10.1016/j.compositesb.2012.12.009 [3] 李永兵, 马运五, 楼铭, 等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201624001.htmLI Yong-bing, MA Yon-wu, LOU Ming, et al. Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering, 2016, 52(24): 1-23. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201624001.htm [4] 李永兵, 李亚庭, 楼铭, 等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报, 2012, 48(18): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201218009.htmLI Yong-bing, LI Ya-ting, LOU Ming, et al. Light weighting of car body and its challenges to joining technologies[J]. Journal of Mechanical Engineering, 2012, 48(18): 44-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201218009.htm [5] MARQUES E A S, CAMPILHO R D S G, DA SILVA L F M. Geometrical study of mixed adhesive joints for high-temperature applications[J]. Journal of Adhesion Science and Technology, 2016, 30(7): 691-707. doi: 10.1080/01694243.2015.1121801 [6] SERGEEV A Y, TURUSOV R A, BAUROVA N I. Strength of the joint of an anisotropic composite and a cylindrical element of the exhaust system of road vehicles[J]. Mechanics of Composite Materials, 2016, 52(1): 89-98. doi: 10.1007/s11029-016-9560-9 [7] AVENDAÑO R, CARBAS R J C, MARQUES E A S, et al. Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive[J]. Composite Structures, 2016, 152: 34-44. doi: 10.1016/j.compstruct.2016.05.034 [8] BANEA M D, DE SOUSA F S M, DA SILVA L F M, et al. Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology, 2011, 25(18): 2461-2474. doi: 10.1163/016942411X580144 [9] KANG S G, KIM M G, KIM C G. Evaluation of cryogenic performance of adhesives using composite-aluminum double-lap joints[J]. Composite Structures, 2007, 78(3): 440-446. doi: 10.1016/j.compstruct.2005.11.005 [10] BANEA M D, DA SILVA L F M, CAMPILHO R D S G. Effect of Temperature on tensile strength and mode I fracture toughness of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology, 2012, 26(7): 939-953. doi: 10.1163/156856111X593649 [11] ADAMS R D, COPPENDALE J, MALLICK V, et al. The effect of temperature on the strength of adhesive joints[J]. International Journal of Adhesion and Adhesives, 1992, 12(3): 185-190. doi: 10.1016/0143-7496(92)90052-W [12] YAO Ming-xia, ZHU De-ju, YAO Yi-ming, et al. Experimental study on basalt FRP/steel single-lap joints under different loading rates and temperatures[J]. Composite Structures, 2016, 145: 68-79. doi: 10.1016/j.compstruct.2016.02.061 [13] NA Jing-xin, MU Wen-long, QIN Guo-feng, et al. Effect of temperature on the mechanical properties of adhesively bonded basalt FRP-aluminum alloy joints in the automotive industry[J]. International Journal of Adhesion and Adhesives, 2018, 85: 138-148. doi: 10.1016/j.ijadhadh.2018.05.027 [14] DA SILVA L F M, ADAMS R D, GIBBS M. Manufacture of adhesive joints and bulk specimens with high-temperature adhesives[J]. International Journal of Adhesion and Adhesives, 2004, 24(1): 69-83. doi: 10.1016/S0143-7496(03)00101-5 [15] BANEA M D, DA SILVA L F M. The effect of temperature on the mechanical properties of adhesives for the automotive industry[J]. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials Design and Applications, 2010, 224: 51-62. doi: 10.1243/14644207JMDA283 [16] ZHANG Ye, VASSILOPOULOS A P, KELLER T. Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints[J]. Composite Structures, 2010, 92(7): 1631-1639. doi: 10.1016/j.compstruct.2009.11.028 [17] 谭伟, 那景新, 范以撒, 等. 考虑温度和载荷影响的动车信息窗粘接结构寿命预测[J]. 交通运输工程学报, 2019, 19(6): 101-110. doi: 10.3969/j.issn.1671-1637.2019.06.011TAN Wei, NA Jing-xin, FAN Yi-sa, et al. Adhesive structure life prediction of EMU information window considering influence of temperature and load[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 101-110. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.06.011 [18] BREWER J C, LAGACE P A. Quadratic stress criterion for initiation of delamination[J]. Journal of Composite Materials, 1988, 22(12): 1141-1155. doi: 10.1177/002199838802201205 [19] NA Jing-xin, LIU Yu, CAI Ling, et al. An adhesive joint strength evaluation method and its application in mechanical engineering[J]. Journal of adhesion science and Technology, 2016, 30(2): 131-144. doi: 10.1080/01694243.2015.1092746 [20] JIANG Xu, QIANG Xu-hong, KOLSTEIN H, et al. Analysis on adhesively-bonded joints of FRP-steel composite bridge under combined loading: Arcan test study and numerical modeling[J]. Polymers, 2016, 8(1): 1-18. [21] LEE M, YEO E, BLACKLOCK M, et al. Predicting the strength of adhesively bonded joints of variable thickness using a cohesive element approach[J]. International Journal of Adhesion and Adhesives, 2015, 58: 44-52. doi: 10.1016/j.ijadhadh.2015.01.006 [22] GRANT L D R, ADAMS R D, DA SILVA L F M. Experimental and numerical analysis of single-lap joints for the automotive industry[J]. International Journal of Adhesion and Adhesives, 2009, 29(4): 405-413. doi: 10.1016/j.ijadhadh.2008.09.001 [23] BOUTAR Y, NAÏMI S, MEZLINI S, et al. Effect of surface treatment on the shear strength of aluminum adhesive single-lap joints for automotive applications[J]. International Journal of Adhesion and Adhesives, 2015, 67: 38-43. [24] ELHANNANI M, MADANI K, LEGRAND E, et al. Numerical analysis of the effect of the presence, number and shape of bonding defect on the shear stresses distribution in an adhesive layer for the single-lap bonded joint, Part 1[J]. Aerospace Science and Technology, 2017, 62: 122-135. [25] BANEA M D, DA SITVA L F M, CAMPILHO R D S G. Moulds design for adhesive bulk and joint specimens manufacturing[J]. Assembly Automation, 2012, 32(3): 284-292. [26] CARLBERGER T, BIEL A, STIGH U. Influence of temperature and strain rate on cohesive properties of a structural epoxy adhesive[J]. International Journal of Fracture, 2009, 155(2): 155-166. [27] VIJAYA KUMAR R L, BHAT M R, MURTHY C R L. Evaluation of kissing bond in composite adhesive lap joints using digital image correlation: preliminary studies[J]. International Journal of Adhesion and Adhesives, 2013, 42: 60-68. [28] COMER A J, KATNAM K B, STANLEY W F, et al. Characterising the behaviour of composite single lap bonded joints using digital image correlation[J]. International Journal of Adhesion and Adhesives, 2013, 40: 215-223. [29] NA Jing-xin, FAN Yi-sa, TAN Wei, et al. Mechanical behavior of polyurethane adhesive bonded joints as a function of temperature and humidity[J]. Journal of Adhesion Science and Technology, 2018, 32(5): 457-472. [30] QIN Guo-feng, FAN Yi-sa, NA Jing-xin, et al. Durability of aluminium alloy adhesive joints in cyclic hydrothermal condition for high-speed EMU applications[J]. International Journal of Adhesion and Adhesives, 2018, 84: 153-165. -