Optimization of differentiated service level for multi-level customers
-
摘要: 基于顾客满意度受到当前供给各要素和以往服务体验共同影响的前提, 建立了参考效应下考虑距离、服务水平和价格等多因素影响的顾客效用函数; 对比顾客在不同企业获得的效用, 引入概率模型刻画顾客选择行为, 提出了服务水平与单位服务成本的关联函数, 构建利润最大化的服务水平优化模型并求解; 以具体商圈中自提服务水平为例, 对比分析了服务水平敏感性系数和竞争企业策略对优化结果的影响。研究结果表明: 敏感性系数从0.2变化为1.0时, 目标企业提供高服务水平带来需求覆盖率增长7.2%, 总利润提高10.4%;当竞争企业采取0.2的服务水平策略和1.2的价格策略时, 目标企业提供高于竞争企业0.39的服务水平吸引顾客, 并通过高价提高单位收益; 当竞争企业采取0.8的服务水平策略和1.8的价格策略时, 目标企业服务水平从0.59上调至0.63以应对竞争, 同时维持低价以保留部分价格敏感的客源; 当竞争企业采取0.2的服务水平策略和1.8的价格策略时, 目标企业通过提供高于竞争者0.47的服务水平提高市场覆盖率, 通过相近的价格保证利润空间; 当竞争企业采取0.8的服务水平策略和1.2的价格策略时, 目标企业提供低服务水平和价格以控制成本, 维持市场份额。Abstract: Based on the premise that satisfaction degrees of customers were affected by the current supply factors and the past service experience, a customer utility function was set up considering the effects of multiple factors such as distance, service level and price under the reference effect. Comparing the utility of customers in different companies, a probability model was introduced to characterize customers' selection behaviors. The correlation function between service level and unit service cost was proposed, and the service level optimization model of maximizing profit was constructed and solved. Taking the pickup service level in a specific business circle as an example, the impacts of sensitivity coefficient for service level and the competing company strategy on the optimization results were compared and analyzed. Research result shows that when the sensitivity coefficient changes from 0.2 to 1.0, a high service level provided by the target company leads to a 7.2% increase in demand coverage and a 10.4% increase in total profit. When the competing company adopts a service level strategy of 0.2 and a price strategy of 1.2, the target company provides a service level of 0.39 higher than the competing company to attract customers, and increases unit revenue through high prices. When the competitor company adopts a service level strategy of 0.8 and a price strategy of 1.8, the target company rises the service level from 0.59 to 0.63 to cope with competition, and maintains low price to retain some price-sensitive customers. When the competitor company adopts a service level strategy of 0.2 and a price strategy of 1.8, the target company improves market coverage by providing a service level of 0.47 higher than that of the competitor, and guarantees profit margin by a quite similar price. When the competitor company adopts a service level strategy of 0.8 and a price strategy of 1.2, the target company provides relatively low service level and price to control cost and maintain market share.
-
表 1 不同算法比较结果
Table 1. Comparison result of different algorithms
组别 χ1 χ2 最优平均值 平均运算时间/s 遗传算法 粒子群算法 遗传算法 粒子群算法 1 20 10 4 313 4 210 623 529 2 40 10 8 011 7 989 1 121 1 015 3 40 20 8 769 8 510 1 636 1 630 4 60 10 8 935 8 931 1 735 1 669 5 60 20 11 290 11 122 1 922 1 898 6 60 30 13 360 13 003 2 120 2 062 表 2 竞争企业每周期竞争策略
Table 2. Competition strategy for each stage of competiting company
周期 服务水平 价格 标准服务 基础服务 专业服务 基础服务 专业服务 专业服务 1 0.2 0.5 0.8 1.2 1.5 1.5 2 0.5 0.8 0.5 1.5 1.8 1.5 3 0.2 0.5 0.2 1.8 1.2 1.8 4 0.8 0.8 0.5 1.2 1.5 1.8 5 0.2 0.2 0.5 1.5 1.8 1.5 表 3 不同服务水平敏感系数下的优化结果
Table 3. Optimization results under different service levels' sensitivity coefficients
指标 标准服务的服务水平策略 基础服务的服务水平策略 专业服务的服务水平策略 服务水平策略均值 顾客效用 需求覆盖率/% 总利润/元 初级顾客 中级顾客 高级顾客 中级顾客 高级顾客 高级顾客 敏感系数 0.2 0.56 0.68 0.56 0.62 0.62 0.56 0.60 58.64 51.0 158 888 0.4 0.68 0.62 0.56 0.62 0.56 0.80 0.64 62.46 54.3 176 477 0.6 0.74 0.56 0.68 0.62 0.56 0.74 0.65 64.41 56.0 184 415 0.8 0.80 0.56 0.62 0.62 0.74 0.62 0.66 66.11 57.4 187 400 1.0 0.74 0.62 0.56 0.68 0.68 0.68 0.66 67.05 58.2 190 185 均值 0.70 0.61 0.60 0.63 0.63 0.68 0.64 63.73 55.4 175 360 竞争企业 0.38 0.38 0.38 0.56 0.56 0.50 0.46 51.31 44.6 98 317 表 4 不同竞争企业策略下的优化结果
Table 4. Optimization results under different strategies of competing company
情景 目标企业 竞争企业 价格 服务水平策略 总利润/元 需求覆盖率/% 价格 服务水平策略 总利润/元 需求覆盖率/% 策略 实际价格 策略 实际价格 1 1.67 偏高 0.59 187 356 58.3 1.2 最低 0.2 4 590 41.7 2 1.65 偏低 0.63 140 982 50.1 1.8 最高 0.8 200 855 49.9 3 1.68 最高 0.67 208 165 61.4 1.8 偏高 0.2 122 959 38.6 4 1.61 最低 0.62 118 616 47.0 1.2 偏低 0.8 24 816 53.0 -
[1] GEFEN D, STRAUB D W. Consumer trust in B2C e-Commerce and the importance of social presence: experiments in e-Products and e-Services[J]. Omega, 2004, 32(6): 407-424. doi: 10.1016/j.omega.2004.01.006 [2] VAN DER VEEKEN D J M, RUTTEN W G M M. Logistics service management: opportunities for differentiation[J]. International Journal of Logistics Management, 1998, 9(2): 91-98. doi: 10.1108/09574099810805861 [3] LIN Yong, LUO Jing, ZHOU Li, et al. The impacts of service quality and customer satisfaction in the e-commerce context[C]//IEEE. 11th International Conference on Service Systems and Service Management. New York: IEEE, 2014: 1-6. [4] KOSTAMI V, KOSTAMIS D, ZIYA S. Pricing and capacity allocation for shared services[J]. Manufacturing and Service Operations Management, 2017, 19(2): 230-245. doi: 10.1287/msom.2016.0606 [5] 南国芳, 吕坤. 基于双寡头竞争的分层服务模型及最优定价策略[J]. 天津大学学报(社会科学版), 2016, 18(3): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXS201603001.htmNAN Guo-fang, LYU Kun. Tiered service model and optimal pricing strategies for duopoly competition[J]. Journal of Tianjin University (Social Science), 2016, 18(3): 193-199. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXS201603001.htm [6] 卢超, 张康康, 陶杰. 考虑配送期限的快递物流服务定价策略研究[J]. 工业工程与管理, 2017, 22(5): 59-64, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201705009.htmLU Chao, ZHANG Kang-kang, TAO Jie. A delivery time based service pricing study for express logistics enterprises[J]. Industrial Engineering and Management, 2017, 22(5): 59-64, 73. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201705009.htm [7] 刘畅, 安实, 谢秉磊. 考虑顾客自提的网络零售商决策研究[J]. 软科学, 2018, 32(3): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-XUXI201803025.htmLIU Chang, AN Shi, XIE Bing-lei. E-tailer's decision strategies considering customer's self-pickup behavior[J]. Soft Science, 2018, 32(3): 114-117. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XUXI201803025.htm [8] TVERSKY A, KAHNEMAN D. Loss aversion in riskless choice: a reference-dependent model[J]. The Quarterly Journal of Economics, 1991, 106(4): 1039-1061. doi: 10.2307/2937956 [9] FRANK R H. The frame of reference as a public good[J]. The Economic Journal, 1997, 107: 1832-1847. doi: 10.1111/j.1468-0297.1997.tb00086.x [10] WINER R S. A reference price model of brand choice for frequently purchased products[J]. Journal of Consumer Research, 1986, 13(2): 250-256. doi: 10.1086/209064 [11] KOPALLE P K, RAO A G, ASSUNÇÃO J L. Asymmetric reference price effects and dynamic pricing policies[J]. Marketing Science, 1996, 15(1): 60-85. doi: 10.1287/mksc.15.1.60 [12] WU Lin-liang, WU De-sheng. Dynamic pricing and risk analytics under competition and stochastic reference price effects[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 1282-1293. doi: 10.1109/TII.2015.2507141 [13] CHEN Xin, HU Peng, HU Zhen-yu. Efficient algorithms for the dynamic pricing problem with reference price effect[J]. Management Science, 2017: 63(12): 4389-4408. doi: 10.1287/mnsc.2016.2554 [14] 吴胜, 雒兴刚, 陈振颂, 等. 需求依赖于产品价格和消费者时间偏好的定价与订货决策[J]. 控制与决策, 2016, 31(9): 1594-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201609009.htmWU Sheng, LUO Xing-gang, CHEN Zhen-song, et al. Pricing and ordering decisions with price and consumer time preference dependent demand[J]. Control and Decision, 2016, 31(9): 1594-1602. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201609009.htm [15] 林志炳. 基于制造商建议零售价的供应链定价策略[J]. 中国管理科学, 2016, 24(11): 153-161. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201611018.htmLIN Zhi-bing. Pricing strategy of supply chain based on manufacturer's suggested retail price[J]. Chinese Journal of Management Science, 2016, 24(11): 153-161. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201611018.htm [16] 刘光乾. 基于售后服务水平的产品动态定价策略[J]. 企业经济, 2014(10): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201410012.htmLIU Guang-qian. Dynamic product pricing strategy based on after-sales service level[J]. Enterprise Economy, 2014(10): 48-51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201410012.htm [17] LU Li-hao, GOU Qing-long, TANG Wan-sheng, et al. Joint pricing and advertising strategy with reference price effect[J]. International Journal of Production Research, 2016, 54(17): 5250-5270. doi: 10.1080/00207543.2016.1165878 [18] CHENAVAZ R. Dynamic quality policies with reference quality effects[J]. Applied Economics, 2017, 49(32): 3156-3162. doi: 10.1080/00036846.2016.1254345 [19] 段永瑞, 徐建, 霍佳震. 考虑参照效应的自有品牌动态定价策略[J]. 工业工程与管理, 2017, 22(1): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201701002.htmDUAN Yong-rui, XU Jian, HUO Jia-zhen. Dynamic pricing of private label with reference effect[J]. Industrial Engineering and Management, 2017, 22(1): 14-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201701002.htm [20] 韩珣, 张锦, 陈义友. 基于顾客需求异质性的多级自提点选址研究[J]. 工业工程与管理, 2017, 22(4): 23-29, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201704004.htmHAN Xun, ZHANG Jin, CHEN Yi-you. Multi-level pickup point location based on customer demand heterogeneity[J]. Industrial Engineering and Management, 2017, 22(4): 23-29, 39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201704004.htm [21] BERMAN O, DREZNER Z, KRASS D. Generalized coverage: new developments in covering location models[J]. Computers and Operations Research, 2010, 37(10): 1675-1687. doi: 10.1016/j.cor.2009.11.003 [22] LI Xue-ping, RAMSHANI M, HUANG Yu. Cooperative maximal covering models for humanitarian relief chain management[J]. Computers and Industrial Engineering, 2018, 119: 301-308. doi: 10.1016/j.cie.2018.04.004 [23] 刘慧, 杨超, 张宗祥. 基于选址效益的联合覆盖模型研究[J]. 运筹与管理, 2017, 26(5): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201705014.htmLIU Hui, YANG Chao, ZHANG Zong-xiang. The research on cooperative coverage modeling based on the effectiveness of the location[J]. Operations Research and Management Science, 2017, 26(5): 95-101. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL201705014.htm [24] 韩珣, 张锦, 陈义友. 基于联合覆盖的自提点服务组合优化问题[J]. 管理学报, 2018, 15(6): 927-935. doi: 10.3969/j.issn.1672-884x.2018.06.016HAN Xun, ZHANG Jin, CHEN Yi-you. Service composition of pickup point under cooperative coverage[J]. Chinese Journal of Management, 2018, 15(6): 927-935. (in Chinese). doi: 10.3969/j.issn.1672-884x.2018.06.016 [25] 陈义友, 韩珣, 曾倩. 考虑送货上门影响的自提点多目标选址问题[J]. 计算机集成制造系统, 2016, 22(11): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201611021.htmCHEN Yi-you, HAN Xun, ZENG Qian. Multi-objective pickup point location problem considering the impact of home delivery[J]. Computer Integrated Manufacturing Systems, 2016, 22(11): 2679-2690. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201611021.htm [26] KAHNEMAN D, TVERSKY A. Prospect theory: an analysis of decision under risk[J]. Econometrica: Journal of the Econometric Society, 1979, 47(2): 263-292. doi: 10.2307/1914185 [27] SCHÜLLER D, PEKÁREK J, CHLEBOVSKÝ V, et al. Novel method of price determination based on reference price[J]. Engineering Economics, 2018, 29(1): 13-23 [28] 韩霜, 张邻, 谭智华, 等. 动态竞争环境下的物流配送中心双层规划模型[J]. 控制与决策, 2014, 29(11): 2055-2060. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201411023.htmHAN Shuang, ZHANG Lin, TAN Zhi-hua, et al. Bi-level programming of logistics distribution center in dynamic competitive environment[J]. Control and Decision, 2014, 29(11): 2055-2060. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201411023.htm [29] 王玖河, 赵贵文. OTO模式下企业最优物流服务水平的测度[J]. 统计与决策, 2014(22): 170-173. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201422051.htmWANG Jiu-he, ZHAO Gui-wen. Measurement of the optimal logistics service level of enterprises under OTO mode[J]. Statistics and Decision, 2014(22): 170-173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJC201422051.htm [30] 朱莉, 丁家兰, 计梦婷. 考虑区域异质性的应急物资选址-分配优化[J]. 系统管理学报, 2018, 27(6): 1142-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL201806016.htmZHU Li, DING Jia-lan, JI Meng-ting. Location-allocation optimization of emergency relief materials considering regional heterogeneity[J]. Journal of Systems and Management, 2018, 27(6): 1142-1149. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTGL201806016.htm -