Evolution characteristics of flexural fatigue performance of dense concrete consolidated with high frequency vibration applied in airport pavement
-
摘要: 为了验证高频振捣滑模摊铺工艺的可靠性及其对含大粒径骨料(最大粒径为40 mm)干硬性混凝土疲劳演化特征的影响, 分别采用小型机具施工工艺(低频振捣)和滑模施工工艺(高频振捣)在郑州新郑机场摊铺40 cm厚混凝土道面板; 对现场切割试件与室内相同配比成型的试件(尺寸均为150 mm×150 mm×550 mm)进行了弯拉强度与疲劳试验, 测量了跨中梁底应变和竖向位移; 根据可靠度理论分析了不同工艺成型混凝土小梁的弯曲疲劳寿命概率分布特征, 建立了弯曲疲劳方程, 进一步分析了试件的弹性模量衰减特征和梁底残余拉伸应变演变规律。研究结果表明: 高频振捣工艺能使混凝土更加致密, 试件平均疲劳寿命较低频振动成型试件长约27%;双对数疲劳方程能够很好地表征含大粒径骨料道面混凝土的疲劳行为; 高应力水平下高频振捣成型混凝土疲劳寿命比室内成型混凝土长4%, 低应力水平下高频振捣成型混凝土疲劳寿命比室内成型混凝土长18%以上; 混凝土抗弯拉弹性模量随加载循环比的增加基本呈线性衰减特征, 试件临近破坏时的抗弯拉弹性模量为初始模量的50%~80%;在重复荷载作用下, 梁底轴向残余应变随加载次数的增加而增大; 提出的4种典型演化形态可表征不同应力水平下混凝土残余应变的复杂增长趋势; 骨料粒径增大是导致试件疲劳性能演变规律离散性的主要原因, 疲劳荷载作用下的累积损伤和骨料依次失效过程是混凝土残余应变演化曲线出现明显台阶特征的主要原因。研究结果为进一步通过足尺环道加速加载试验建立室内试验与现场足尺道面板性能关联方程奠定了基础。Abstract: To verify the reliability of slip-form paving technology with high frequency vibration and its influence on the evolution characteristic of flexural fatigue of dry concrete containing large diameter aggregates(maximum to 40 mm), two 40 cm-thick concrete pavement slabs were constructed adopting the small machine construction process(low frequency vibration) and slip-form construction technology(high frequency vibration), respectively, at Xinzheng Airport, Zhengzhou. The flexural tensile strength and fatigue tests were conducted on the specimens(both dimensions are 150 mm×150 mm×550 mm) cut on the field and prepared in the laboratory with the same mixture proportion. The strains and vertical deflections at the mid span bottom of beam were measured. The flexural fatigue life probability distribution characteristics of concrete beams consolidated with different methods were analyzed according to the reliability theory, and the flexural fatigue equations were established. The deteriorations of flexural moduli of specimens and the evolutions of residual strains at the mid span bottom of beam were analyzed as well. Research result shows that the high frequency vibration technology consolidates the concrete denser, and the average fatigue life of specimens is about 27% longer than that consolidated with low frequency vibration. The double logarithmic fatigue equation can well characterize the fatigue behavior of pavement concrete containing large-diameter aggregates. The fatigue life of concrete consolidated with high frequency vibration is 4% longer than that consolidated with low frequency vibration at high stress level, while the fatigue life of concrete consolidated with high frequency vibration is 18% longer than that consolidated with low frequency vibration at low stress level. The flexural tensile modulus of concrete deteriorates linearly with the increase of loading cycle ratio. The flexural tensile moduli of specimens at the failure point are 50%-80% of the initial moduli. The axial residual strain at the bottom of beam increases with the accumulation of loading cycles. The four proposed typical evolutionary morphologies can characterize the complex growth trends of concrete residual strains at different stress levels. The increase of aggregate size mainly leads to the dispersion of the evolution rule of specimen's fatigue performance. The cumulative damage and gradually failure of aggregates under the fatigue load are responsible for the typical step characteristics in the concrete residual strain evolution curves. The research results provide a foundation for the establishment of relation function between the laboratory test and the full scale concrete pavement slab on the field, through the full scale ring track acceleration loading test.
-
Key words:
- airport pavement /
- dry concrete /
- high frequency vibration /
- fatigue equation /
- evolution characteristic
-
表 1 试验用混凝土配合比
Table 1. Concrete mixture proportions for tests
参数名称 水泥掺量/kg 水掺量/kg 河砂掺量/kg 10~20 mm碎石掺量/kg 20~40 mm碎石掺量/kg 外加剂掺量/kg 砂率/% 水灰比 新拌混凝土含气量/% 坍落度/mm 参数值 330 132 630 561 841 6.6 31 0.42 2.5~3.5 10~20 表 2 弯拉强度试验结果
Table 2. Results of flexural tensile strength tests
指标 施工/成型方式 室内成型 小型机具施工 滑模机械施工 弯拉强度均值/MPa 5.89 6.21 6.66 较室内标准试件强度提高百分比/% 5.4 13.0 表 3 弯曲疲劳试验结果
Table 3. Flexural fatigue test results
施工/成型方式 低高应力比 应力水平 试件编号 疲劳寿命/次 疲劳寿命均值/次 滑模机械施工 0.37 0.95 HM-1 19 68 HM-2 65 HM-3 120 0.41 0.85 HM-4 1 270 2 802 HM-5 2 500 HM-6 4 636 0.47 0.75 HM-7 85 000 296 670 HM-8 205 000 HM-9 600 010 0.33 0.75 HM-10 15 320 122 900 HM-11 74 580 HM-12 89 160 HM-13 312 540 HM-14 小型机具施工 0.33 0.75 RG-1 8 850 96 774 RG-2 20 060 RG-3 69 870 RG-4 155 680 RG-5 229 410 室内成型 0.37 0.95 SN-1 38 70 SN-2 74 SN-3 98 0.41 0.85 SN-4 890 2 047 SN-5 1 508 SN-6 3 742 0.47 0.75 SN-7 149 080 250 050 SN-8 187 000 SN-9 414 070 0.33 0.75 SN-10 10 060 100 613 SN-11 22 260 SN-12 68 390 SN-13 111 520 SN-14 190 890 SN-15 200 560 表 4 两参数Weibull分布拟合结果
Table 4. Fitting results for two-parameter Weibull distribution
施工方式 疲劳应力水平 m ln(t) R2 滑模机械施工 0.95 0.833 4 3.736 1 0.985 0 0.85 1.215 8 9.917 0 0.998 3 0.75 0.774 2 9.523 2 0.946 5 小型机具施工 0.75 0.637 9 7.405 6 0.975 3 室内成型 0.95 1.598 3 7.102 3 0.973 8 0.85 1.058 6 8.310 5 0.952 2 0.75 0.810 4 9.795 2 0.943 3 室内成型和小型机具施工* 0.75 0.824 7 9.804 7 0.944 4 表 5 滑模施工混凝土试件不同失效概率下的疲劳方程回归系数
Table 5. Regression coefficients for fatigue equation of concrete specimens consolidated with slip-form under different failure probabilities
失效概率p a b R2 0.05 0.986 1 0.030 4 0.964 6 0.10 1.011 1 0.030 6 0.979 8 0.15 1.026 1 0.030 6 0.987 0 0.20 1.037 3 0.030 6 0.991 2 0.25 1.045 9 0.030 6 0.994 0 0.30 1.053 4 0.030 5 0.995 9 0.35 1.059 7 0.030 5 0.997 3 0.40 1.065 6 0.030 5 0.998 3 0.45 1.070 8 0.030 4 0.999 0 0.50 1.075 7 0.030 4 0.999 5 表 6 室内成型混凝土试件不同失效概率下的疲劳方程回归系数
Table 6. Regression coefficients for fatigue equation of concrete specimens consolidated in laboratory under different failure probabilities
失效概率p a b R2 0.05 1.053 4 0.041 3 0.998 0 0.10 1.064 9 0.038 5 0.998 7 0.15 1.071 0 0.037 0 0.999 0 0.20 1.075 2 0.035 9 0.999 2 0.25 1.078 4 0.035 2 0.999 3 0.30 1.081 2 0.034 5 0.999 4 0.35 1.083 4 0.034 0 0.999 5 0.40 1.085 4 0.033 5 0.999 6 0.45 1.087 2 0.033 1 0.999 6 0.50 1.088 7 0.032 4 0.999 7 表 7 弯曲疲劳试验中混凝土最大残余应变
Table 7. Maximum residual strains of concrete during flexural fatigue tests
-
[1] ROLLINGS R S, WITCZAK M W. Structural deterioration model for rigid airfield pavements[J]. Journal of Transportation Engineering, 1990, 116(4): 479-491. doi: 10.1061/(ASCE)0733-947X(1990)116:4(479) [2] Federal Aviation Administration. Airport pavement design and evaluation, circular advisory[R]. Washington DC: U. S. Department of Transportation, 2009. [3] FOXWORTHY P T, DARTER M I. A comprehensive system for nondestructive testing and evaluation of rigid airfield pavements[J]. Transportation Research Record, 1986(1070): 114-124. [4] ARA Inc. Guide for mechanistic-empirical design of new and rehabilitated pavement structures[R]. Washington DC: Transportation Research Board, 2004. [5] PACKARD R G, TAYABJI S D. New PCA thickness design procedure for concrete highway and street pavements[C]//Purdue University. Proceedings of the Third International Conference on Concrete Pavement Design and Rehabilitation. West Lafayette: Purdue University, 1985(1): 224-235. [6] DARTER M I, BARENBERG E J. Design of zero-maintenance plain jointed concrete pavement, Vol. Ⅱ—Design Manual[R]. Urbana-Champaign: University of Illinois, 1977. [7] ROESLER J R. Fatigue resistance of concrete pavements[C]//Delft University of Technology. Proceedings of 6th International DUT—Workshop on Fundamental Modelling of Design and Performance of Concrete Pavements. Delft: Delft University of Technology, 2006: 1247-1268. [8] ROESLER J R, LITTLETON P C, HILLER J E. et al. Effect of stress state on concrete slab fatigue resistance[R]. Urbana-Champaign: University of Illinois, 2004. [9] 范宝甫. 水泥混凝土挠曲疲劳强度σf的研究[J]. 华东公路, 1985(5): 31-40.FAN Bao-fu. Study on flexural fatigue strength σf of concrete[J]. East China Highway, 1985(5): 31-40. (in Chinese). [10] 石小平, 姚祖康, 李华, 等. 水泥混凝土的弯曲疲劳特性[J]. 土木工程学报, 1990, 23(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199003001.htmSHI Xiao-ping, YAO Zu-kang, LI Hua, et al. Study on flexural fatigue behavior of cement concrete[J]. China Civil Engineering Journal, 1990, 23(3): 11-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199003001.htm [11] 王秉纲, 王选仓, 高维成, 等. 重载水泥混凝土路面疲劳关系研究[C]//中国公路学会. 中国公路学会'2000学术交流会论文集. 北京: 中国公路学会, 2000: 112-116.WANG Bing-gang, WANG Xuan-cang, GAO Wei-cheng, et al. Study on the fatigue relationship of heavy-duty cement concrete pavement[C]//China Highway and Transportation Society. Proceedings of China Highway and Transportation Society Seminar in 2000. Beijing: China Highway and Transportation Society, 2000: 112-116. (in Chinese). [12] 高维成. 水泥混凝土路面疲劳特性研究[D]. 西安: 西安公路交通大学, 2000.GAO Wei-cheng. Study on fatigue behavior of concrete pavements[D]. Xi'an: Xi'an Highway University, 2000. (in Chinese). [13] 李朝阳, 宋玉普, 赵国藩. 混凝土疲劳残余应变性能研究[J]. 大连理工大学学报, 2001, 41(3): 355-358. doi: 10.3321/j.issn:1000-8608.2001.03.022LI Chao-yang, SONG Yu-pu, ZHAO Guo-fan. Study of residual strain of concrete under fatigue loading[J]. Journal of Dalian University of Technology, 2001, 41(3): 355-358. (in Chinese). doi: 10.3321/j.issn:1000-8608.2001.03.022 [14] 郭寅川, 申爱琴, 田丰, 等. 动态疲劳荷载作用下路面混凝土力学性能研究[J]. 中国公路学报, 2017, 30(7): 18-24. doi: 10.3969/j.issn.1001-7372.2017.07.003GUO Yin-chuan, SHEN Ai-qin, TIAN Feng, et al. Mechanical property of pavement cement concrete under dynamic fatigue load[J]. China Journal of Highway and Transport, 2017, 30(7): 18-24. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.07.003 [15] 谢建斌, 何天淳, 程赫明, 等. 循环荷载下路面用钢纤维混凝土的弯曲疲劳研究[J]. 兰州理工大学学报, 2004, 30(2): 104-109. doi: 10.3969/j.issn.1673-5196.2004.02.029XIE Jian-bin, HE Tian-chun, CHENG He-ming, et al. Investigation flexural fatigue behavior of steel fiber reinforced concrete for pavement surface stratum under cyclic load[J]. Journal of Lanzhou University of Technology, 2004, 30(2): 104-109. (in Chinese). doi: 10.3969/j.issn.1673-5196.2004.02.029 [16] BANJARA N K, RAMANJANEYULU K, SASMAL S, et al. Flexural fatigue performance of plain and fibre reinforced concrete[J]. Transactions of the Indian Institute of Metals, 2016, 69(2): 373-377. doi: 10.1007/s12666-015-0770-y [17] LEE M K, BARR B I G. An overview of the fatigue behavior of plain and fiber reinforced concrete[J]. Cement and Concrete Composites, 2004, 26(4): 299-305. doi: 10.1016/S0958-9465(02)00139-7 [18] ALLICHE A. Damage model for fatigue loading of concrete[J]. International Journal of Fatigue, 2004, 26(9): 915-921. doi: 10.1016/j.ijfatigue.2004.02.006 [19] 凌海宇, 田波, 权磊, 等. 振动条件下基于扩展度的低坍落度混凝土工作性评价[J]. 混凝土, 2018(6): 101-104. doi: 10.3969/j.issn.1002-3550.2018.06.025LING Hai-yu, TIAN Bo, QUAN Lei, et al. Evaluation of workability of low slump concrete based on extensibility under vibration condition[J]. Concrete, 2018(6): 101-104. (in Chinese). doi: 10.3969/j.issn.1002-3550.2018.06.025 [20] ROESLER J R. Fatigue of concrete beams and slabs[D]. Urbana-Champaign: University of Illinois, 1998. [21] 杜修力, 金浏. 非均质混凝土材料破坏的三维细观数值模拟[J]. 工程力学, 2013, 30(2): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302012.htmDU Xiu-li, JIN Liu. Numerical simulation of three-dimensional meso-mechanical model for damage process of heterogeneous concrete[J]. Engineering Mechanics, 2013, 30(2): 92-98. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302012.htm [22] MAITRA S R, REDDY K S, RAMACHANDRA L S. Numerical investigation of fatigue characteristics of concrete pavement[J]. International Journal of Fracture, 2014, 189(2): 181-193. doi: 10.1007/s10704-014-9969-x [23] 周正峰, 蒲卓桁, 唐基华. 双线性黏聚区模型在混凝土路面损伤开裂分析中的应用[J]. 交通运输工程学报, 2019, 19(1): 17-23. doi: 10.3969/j.issn.1671-1637.2019.01.003ZHOU Zheng-feng, PU Zhuo-heng, TANG Ji-hua. Application of bilinear cohesive zone model in damage and cracking analysis of concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 17-23. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.003 [24] 党发宁, 刘彦文, 丁卫华, 等. 基于破损演化理论的混凝土CT图像定量分析[J]. 岩石力学与工程学报, 2007, 26(8): 1588-1593. doi: 10.3321/j.issn:1000-6915.2007.08.008DANG Fa-ning, LIU Yan-wen, DING Wei-hua, et al. Quantitative analysis of concrete CT images based on damage-fracture evolution theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1588-1593. (in Chinese). doi: 10.3321/j.issn:1000-6915.2007.08.008 [25] 谭忆秋, 邢超, 张磊, 等. 均质性对沥青混合料应变场分布的影响[J]. 中国公路学报, 2016, 29(4): 8-13. doi: 10.3969/j.issn.1001-7372.2016.04.002TAN Yi-qiu, XING Chao, ZHANG Lei, et al. Effects of homogeneity on asphalt mixture strain field distribution[J]. China Journal of Highway and Transport, 2016, 29(4): 8-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.04.002 [26] 蔡良才, 王海服, 张罗利, 等. 基于累积损伤的机场道面剩余寿命预测模型[J]. 交通运输工程学报, 2014, 14(4): 1-6. http://transport.chd.edu.cn/article/id/201404001CAI Liang-cai, WANG Hai-fu, ZHANG Luo-li, et al. Prediction model of remaining life for airport pavement based on cumulative damage[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 1-6. (in Chinese). http://transport.chd.edu.cn/article/id/201404001 [27] CAI Liang-cai, ZHU Zhan-qing, WU Ai-hong, et al. Cement concrete pavement design based on cumulative damage factor[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 1-8, 24. [28] 王观虎, 蔡良才, 邵斌, 等. 机场水泥混凝土道面使用寿命的改进灰色预测模型[J]. 交通运输工程学报, 2009, 9(3): 45-48. doi: 10.3321/j.issn:1671-1637.2009.03.008WANG Guan-hu, CAI Liang-cai, SHAO Bin, et al. Modified gray prediction model of service life for airport cement concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 45-48. (in Chinese). doi: 10.3321/j.issn:1671-1637.2009.03.008 [29] 洪锦祥, 缪昌文, 石杏喜, 等. 混凝土疲劳变形曲线三阶段的比例关系与应变速率[J]. 南京理工大学学报, 2013, 37(1): 150-155. doi: 10.3969/j.issn.1005-9830.2013.01.026HONG Jin-xiang, MIAO Chang-wen, SHI Xing-xi, et al. Proportion relation and strain rate of three-stage concrete's fatigue deformation curve[J]. Journal of Nanjing University of Science and Technology, 2013, 37(1): 150-155. (in Chinese). doi: 10.3969/j.issn.1005-9830.2013.01.026 [30] 刘芳平, 周建庭. 基于疲劳应变演化的混凝土弯曲强度退化分析[J]. 中国公路学报, 2017, 30(4): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704012.htmLIU Fang-ping, ZHOU Jian-ting. Concrete bending strength degradation analysis based on fatigue strain evolution[J]. China Journal of Highway and Transport, 2017, 30(4): 97-105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704012.htm [31] GUDIMETTLA J M, CRAWFORD G L, GROVE J. Optimizing paving mixtures for durable, cost-effective, and sustainable concrete[J]. Transportation Research Record, 2016(2573): 115-124. [32] 季节, 刘禄厚, 索智, 等. 环氧沥青混凝土抗疲劳层对柔性基层长寿命沥青混凝土路面结构的影响[J]. 交通运输工程学报, 2017, 17(4): 1-8. doi: 10.3969/j.issn.1671-1637.2017.04.001JI Jie, LIU Lu-hou, SUO Zhi, et al. Influence of epoxy asphalt concrete anti-fatigue layer on structure of perpetual asphalt concrete pavement with flexible base[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 1-8. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.001 [33] 吴玉, 蒋鑫, 吴朝阳, 等. 土基模量对水泥混凝土路面轮载疲劳开裂损伤的影响[J]. 交通运输工程学报, 2017, 17(2): 31-40. http://transport.chd.edu.cn/article/id/201702004WU Yu, JIANG Xin, WU Chao-yang, et al. Influence of subgrade modulus on fatigue cracking damage of cement concrete pavement under traffic load[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 31-40. (in Chinese). http://transport.chd.edu.cn/article/id/201702004 -