-
摘要: 为系统分析和总结航运管理的研究现状与发展趋势, 针对WOS数据库和CNKI数据库收录的628篇文献, 用知识图谱分析软件VOSviewer进行航运管理共词聚类分析, 得到航运管理的3个研究热点, 即航运市场分析、航运运营管理和绿色航运; 综述了航运管理研究的范围、对象与方法, 分析了航运管理未来的主要研究方向。研究结果表明: 目前主要采用时间序列模型分析航运市场, 围绕运价研究货运市场与船舶市场的供需关系; 航运运营管理的研究多集中在以成本最小化或利润最大化为目标建立数学优化模型, 并设计启发式算法求解战略、战术和运作3个层面上的决策问题; 绿色航运研究侧重于解决实际的减排问题, 对技术性措施、营运性措施和基于市场的措施进行成本效益、减排效果的比较和分析。未来有关航运管理的研究方向主要包括: 建立多目标、多阶段数学优化模型, 满足多元化的航运管理目标, 实现不同范围和级别航运管理的协同优化; 从海运供应链的角度拓展航运管理研究, 一体化考虑内陆运输和海上运输以及各利益相关者之间的复杂关系; 研究不确定条件下的航运管理问题; 基于人工智能算法和航运大数据, 设计更准确高效的市场分析方法和模型求解算法; 研究智能航运新业态下的航运管理问题。Abstract: In order to systematically analyze and summarize the research status and development trend of shipping management, the co-word cluster analysis of shipping management based on the 628 literatures from WOS Database and CNKI Database was carried out by knowledge map analysis software VOSviewer, and three research hotspots were obtained, including shipping market analysis, shipping operation management and green shipping. According to above three hotspots, the researching areas, objectives and methods of shipping management were summarized, and the main directions of future research were put forward. Research result shows that the time-series model is mainly adopted to analyze shipping market, and the relationship between the supply and demand of freight market and shipping market is studied mainly based on the freight rate. The research of shipping operation management mostly focuses on setting up optimal mathematical model with the objectives of minimizing cost or maximizing profit, and using the heuristic algorithms to deal with the problems at the strategic, tactical and operational decision-making levels.The current research of green shipping mainly solves the practical emission reduction problem, and compares and analyzes the cost-effectivenesses and emission reduction effects of technical measures, operational measures and market-based measures. The future main research directions of shipping management are as follows: the multi-objective and multi-stage mathematical optimization model should be established to meet the various goals of shipping management in order to achieve the collaborative optimization of shipping managements with different scopes and levels; the research of shipping management should be extended from the perspective of shipping supply, and it is necessary to integrally consider the complex relationships among inland transportation, maritime transportation and stakeholders; the issues of shipping management should be investigated under uncertain conditions; the market analysis methods and model solving algorithms with higher accuracy and efficiency should be designed based on the artificial intelligent algorithms and shipping big data; and the shipping management in the new format of intelligent shipping should be researched.
-
Key words:
- water transportation /
- shipping management /
- shipping market /
- operation management /
- green shipping /
- review
-
表 1 航运市场的研究总结
Table 1. Research summary on shipping market
研究范围 研究主题 研究对象 研究方法 文献来源 货运市场 运价波动性 干散货市场 向量自回归(Vector Autoregression, VAR)模型、向量误差校正模型(Vector Error Correction Model, VECM)、自回归广义自回归条件异方差(Autoregressive-Generalized Autoregressive Conditional Heteroskedasticity, AR-GARCH)模型、集成连续自回归(Integrated Continuous Autoregressive, ICAR)模型、经验模态分解-小波分析(Empirical Mode Decomposition-Wavelet Analysis, EMD-WA)模型 [12]~[15] 运价预测 干散货市场 自回归移动平均(Autoregressive Moving Average, ARMA)模型、霍尔特-温特(Holt-Winters)非季节模型、非线性自回归动态网络(Non-linear Autoregressive Dynamic Network, NARNET)模型、具有外部输入的非线性自回归神经网络(Non-linear Autoregressive Neural Network with External Input, NARXNET)模型 [16]、[19] 班轮市场 差分整合移动平均自回归(Autoregressive Integrated Moving Average, ARIMA)模型、自回归条件异方差(Autoregressive Conditional Heteroscedasticity, ARCH)模型 [17] 油运市场 人工神经网络(Artificial Neural Network, ANN)模型、自适应遗传算法(Adaptive Genetic Algorithm, AGA) [18] 市场定价及影响机制 班轮市场 合作博弈理论、价格方程和回归分析、二元广义自回归条件异方差(Generalized Autoregressive Conditional Heteroscedasticity, GARCH)模型 [20]、[21]、[23] 干散货市场 价格博弈理论 [22] 船舶市场 运价与船舶市场价格的相互影响 造船市场、二手船市场、拆船市场 GARCH模型、单方程模型、结构方程建模 [24]~[26] 表 2 航运运营管理的研究总结
Table 2. Research summary on shipping operation management
研究范围 研究主题 研究目标 模型类型 求解算法 文献来源 战略层 新组建船队规划 总成本最小化 整数规划、动态规划、非线性规划 遗传算法、动态规划算法、集合划分算法 [28]、[30]、[32] 总收益最大化 动态规划 最短路径算法、技术经济性分析 [29]、[31] 船队更新 总成本最小化 随机规划、随机混合整数规划 Xpress-MP软件、滚动时域算法 [33]、[34]、[36] 多目标最优 动态规划 多目标离散粒子群优化算法 [35] 总收益最大化 整数规划 设计求解算法 [38] 战术层 分支航线网络 总成本最小化 整数规划、随机VRP、混合整数线性规划 遗传算法、适应邻域搜索算法 [39]~[41] 货运需求最大化 整数规划 智能启发式算法 [42] 多港挂靠航线网络 总成本最小化 混合整数非线性规划、混合整数规划 CPLEX软件、滚动时域算法、GAMS/OSICPLEX求解器 [44]、[46]、[48]~[50] 总收益最大化 混合整数规划、两阶段模型 遗传算法、CPLEX软件、BCB算法 [43]、[45]、[47] 轴辐式航线网络 总成本最小化 整数规划、混合整数规划 遗传算法、CPLEX软件 [54]~[57] 总收益最大化 混合整数线性规划 分解算法 [52] 市场份额最大化 混合整数线性规划 拉格朗日分解算法 [51] 多目标最优 博弈论 区间分支定界法 [53] 混合式航线网络 总成本最小化 混合整数线性规划、混合整数非线性规划 CPLEX软件、分段线性逼近函数、分支定界法、拉格朗日分解算法 [58]~[62] 总收益最大化 混合整数非线性规划 二阶锥规划(Second-Order Cone Programming, SOCP)算法、禁忌搜索算法 [63] 运作层 大宗工业物资运输 总成本最小化 混合整数规划 Xpress-MP软件、基于滚动时域和松弛-固定的启发式算法、动态规划算法 [64]、[66]、[67] 多目标最优 混合整数规划 CPLEX软件 [65] 不定期船运输 总收益最大化 混合整数非线性规划、非线性规划、混合整数规划 集合划分算法、多起始点局部搜索启发式算法、遗传算法 [68]~[71] 班轮运输 总成本最小化 整数规划、随机规划、混合整数规划 最短路和两阶段启发式算法、基于向后价值迭代的最优控制策略、加速粒子群优化(Accelerated Particle Swarm Optimization, APSO)算法 [74]~[75] 总收益最大化 混合整数非线性规划 分支定界法 [73] 多目标最优 整数规划、混合整数规划 蚁群算法和邻域搜索技术、CPLEX软件 [72]~[77] 表 3 绿色航运的研究总结
Table 3. Research summary on green shipping
研究范围 研究主题 研究对象 研究方法 文献来源 技术性措施 成本效益比较 SOx、碳减排措施 减排成本估计、现金流建模、净现值估计、两阶段随机优化模型、边际减排成本曲线 [82]、[83]、[85]、[86]、[88] 减排效果比较 SOx减排措施 年燃油消耗量估计 [84] 综合评价 SOx、NOx减排措施 TOPSIS、AHP、FAHP、证据理论 [87]、[89]、[90] 营运性措施 减排效果分析 减速航行 利润最大化方程、实证分析、t检验 [91]、[92]、[97] 绿色航运运营管理优化 航速、船舶配载、燃油切换位置、网络结构 GSRSP、航速优化模型、航运网络设计模型 [93]~[96]、[98] 基于市场的措施 实施效果分析 国际碳税、航运燃油税 GTAP-E模型、蛛网原理 [99]、[100] 运营管理优化 海事排放贸易计划、欧盟的排放收费计划 船队规划模型、航运网络设计模型、船队构成和航线配船优化模型 [101]~[103] -
[1] LUN V Y H, LAI K H, DANIEL NG C T, et al. Editorial: research in shipping and transport logistics[J]. International Journal of Shipping and Transport Logistics, 2011, 3(1): 1-5. [2] SHI W M, LI K X. Themes and tools of maritime transport research during 2000-2014[J]. Maritime Policy and Management, 2017, 44(2): 151-169. doi: 10.1080/03088839.2016.1274833 [3] TALLY W K. Maritime transportation research: topics and methodologies[J]. Maritime Policy and Management, 2013, 40(7): 709-725. doi: 10.1080/03088839.2013.851463 [4] 杨秋平, 谢新连, 赵家保. 船队规划研究现状与动态[J]. 交通运输工程学报, 2010, 10(4): 85-90. doi: 10.3969/j.issn.1671-1637.2010.04.014YANG Qiu-ping, XIE Xin-lian, ZHAO Jia-bao. Research status and prospect of fleet planning[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 85-90. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.04.014 [5] 常祎妹, 朱晓宁, 王力. 集装箱码头集成调度研究综述[J]. 交通运输工程学报, 2019, 19(1): 136-146. doi: 10.3969/j.issn.1671-1637.2019.01.014CHANG Yi-mei, ZHU Xiao-ning, WANG Li. Review on integrated scheduling of container terminals[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 136-146. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.014 [6] MENG Qiang, WANG Shuai-an, ANDERSSON H, et al. Containership routing and scheduling in liner shipping: overview and future research directions[J]. Transportation Science, 2014, 48(2): 265-280. doi: 10.1287/trsc.2013.0461 [7] VEJVAR M, LAI K H, LO C K Y. A citation network analysis of sustainability development in liner shipping management: a review of the literature and policy implications[J]. Maritime Policy and Management, 2020, 47(1): 1-26. doi: 10.1080/03088839.2019.1657971 [8] SHI Wen-ming, XIAO Yi, CHEN Zhuo, et al. Evolution of green shipping research: themes and methods[J]. Maritime Policy and Management, 2018, 45(7): 863-876. doi: 10.1080/03088839.2018.1489150 [9] Shipping Research Centre of the Hong Kong Polytechnic University. Top shipping school research rankings 2017-2019[R]. Hong Kong: The Hong Kong Polytechnic University, 2020. [10] SORESCU F, BOSNEAGU R, COCA C E. Strategic research of the maritime market[J]. Acta Universitatis Danubius Administratio, 2013, 5(1): 39-48. [11] VENUS LUN Y H, QUADDUS M A. An empirical model of the bulk shipping market[J]. International Journal of Shipping and Transport Logistics, 2009, 1(1): 37-54. doi: 10.1504/IJSTL.2009.021975 [12] XU J J, YIP T L, MARLOW P B. The dynamics between freight volatility and fleet size growth in dry bulk shipping markets[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(6): 983-991. doi: 10.1016/j.tre.2011.05.008 [13] YIN Jing-bo, LUO Mei-feng, FAN Li-xian. Dynamics and interactions between spot and forward freights in the dry bulk shipping market[J]. Maritime Policy and Management, 2017, 44(2): 271-288. doi: 10.1080/03088839.2016.1253884 [14] ADLAND R, BENTH F E, KOEKEBAKKER S. Multivariate modeling and analysis of regional ocean freight rates[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 113: 194-221. doi: 10.1016/j.tre.2017.10.014 [15] 武华华, 匡海波, 孟斌, 等. 基于EMD-WA模型的BDI指数波动周期特征研究[J]. 系统工程理论与实践, 2018, 38(6): 1586-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201806019.htmWU Hua-hua, KUANG Hai-bo, MENG Bin, et al. Study on the periodic characteristics of BDI index based on EMD-WA model[J]. Systems Engineering—Theory and Practice, 2018, 38(6): 1586-1598. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201806019.htm [16] 赵福杰, 谢新连. 基于小波分析的铁矿石运价预测[J]. 上海交通大学学报, 2013, 47(2): 295-299. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201302024.htmZHAO Fu-jie, XIE Xin-lian. Forecasting iron ore freight rates based on wavelet analysis[J]. Journal of Shanghai Jiaotong University, 2013, 47(2): 295-299. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201302024.htm [17] MUNIM Z H, SCHRAMM H J. Forecasting container shipping freight rates for the far east—Northern Europe trade lane[J]. Maritime Economics and Logistics, 2017, 19(1): 106-125. doi: 10.1057/s41278-016-0051-7 [18] ESLAMI P, JUNG K, LEE D, et al. Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm[J]. Maritime Economics and Logistics, 2017, 19(3): 538-550. doi: 10.1057/mel.2016.1 [19] YANG Zai-li, MEHMED E E. Artificial neural networks in freight rate forecasting[J]. Maritime Economics and Logistics, 2019, 21(3): 390-414. doi: 10.1057/s41278-019-00121-x [20] DE OLIVEIRA G F. Determinants of European freight rates: the role of market power and trade imbalance[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 62: 23-33. doi: 10.1016/j.tre.2013.12.001 [21] 张永锋, 赵刚, 陈继红. 寡头垄断模式下集装箱运价影响机制实证分析[J]. 交通运输系统工程与信息, 2016, 16(5): 14-20, 32. doi: 10.3969/j.issn.1009-6744.2016.05.002ZHANG Yong-feng, ZHAO Gang, CHEN Ji-hong. Empirical analysis of the influencing mechanism of container freight in the case of oligopoly[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(5): 14-20, 32. (in Chinese). doi: 10.3969/j.issn.1009-6744.2016.05.002 [22] PENG Zi-xuan, SHAN Wen-xuan, GUAN Feng, et al. Stable vessel-cargo matching in dry bulk shipping market with price game mechanism[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 95: 76-94. doi: 10.1016/j.tre.2016.08.007 [23] CHEN Rong-ying, DONG Jing-xin, LEE Chung-yee. Pricing and competition in a shipping market with waste shipments and empty container repositioning[J]. Transportation Research Part B: Methodological, 2016, 85: 32-55. doi: 10.1016/j.trb.2015.12.012 [24] DAI Lei, HU Hao, CHEN Fei-er, et al. The dynamics between newbuilding ship price volatility and freight volatility in dry bulk shipping market[J]. International Journal of Shipping and Transport Logistics, 2015, 7(4): 393-406. doi: 10.1504/IJSTL.2015.069666 [25] ADLAND R, JIA Hai-ying. Shipping market integration: the case of sticky newbuilding prices[J]. Maritime Economics and Logistics, 2015, 17(4): 389-398. doi: 10.1057/mel.2014.35 [26] BAI Xi-wen, LAM J S L. An integrated analysis of interrelationships within the very large gas carrier (VLGC) shipping market[J]. Maritime Economics and Logistics, 2019, 21(3): 372-389. doi: 10.1057/s41278-017-0087-3 [27] AGARWAL R, ERGUN Ö. Ship scheduling and network design for cargo routing in liner shipping[J]. Transportation Science, 2008, 42(2): 175-196. doi: 10.1287/trsc.1070.0205 [28] DONG Jing-xin, SONG Dong-ping. Container fleet sizing and empty repositioning in liner shipping systems[J]. Transportation Research Part E: Logistics and Transportation Review, 2009, 45(6): 860-877. doi: 10.1016/j.tre.2009.05.001 [29] MENG Qiang, WANG Ting-song. A scenario-based dynamic programming model for multi-period liner ship fleet planning[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(4): 401-413. doi: 10.1016/j.tre.2010.12.005 [30] 谢新连, 桑惠云, 杨秋平, 等. 中国进口原油运输船队规划案例[J]. 系统工程理论与实践, 2013, 33(6): 1543-1549. doi: 10.3969/j.issn.1000-6788.2013.06.023XIE Xin-lian, SANG Hui-yun, YANG Qiu-ping, et al. Case study on fleet planning for carriers of China importing crude oil[J]. Systems Engineering—Theory and Practice, 2013, 33(6): 1543-1549. (in Chinese). doi: 10.3969/j.issn.1000-6788.2013.06.023 [31] SANTOS T A, GUEDES SOARES C. Methodology for ro-ro ship and fleet sizing with application to short sea shipping[J]. Maritime Policy and Management, 2017, 44(7): 859-881. doi: 10.1080/03088839.2017.1349349 [32] KOZA D F, ROPKE S, MOLAS A B. The liquefied natural gas infrastructure and tanker fleet sizing problem[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 99: 96-114. doi: 10.1016/j.tre.2017.01.003 [33] BAKKEHAUG R, EIDEM E S, FAGERHOLT K, et al. A stochastic programming formulation for strategic fleet renewal in shipping[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 72: 60-76. doi: 10.1016/j.tre.2014.09.010 [34] PANTUSO G, FAGERHOLT K, WALLACE S W. Uncertainty in fleet renewal: a case from maritime transportation[J]. Transportation Science, 2016, 50(2): 390-407. doi: 10.1287/trsc.2014.0566 [35] 齐钧, 王丽铮, 苏绍娟. 客运班轮动态船队规划数学模型及其求解方法研究[J]. 交通运输系统工程与信息, 2017, 17(4): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201704029.htmQI Jun, WANG Li-zheng, SU Shao-juan. Passenger liner dynamic fleet planning mathematical model and solving method[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 195-200. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201704029.htm [36] ARSLAN A N, PAPAGEORGIOU D J. Bulk ship fleet renewal and deployment under uncertainty: a multi-stage stochastic programming approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 97: 69-96. doi: 10.1016/j.tre.2016.10.009 [37] ZHENG Shi-yuan, CHEN Shun. Fleet replacement decisions under demand and fuel price uncertainties[J]. Transportation Research Part D: Transport and Environment, 2018, 60: 153-173. doi: 10.1016/j.trd.2016.09.001 [38] YANG Zhong-zhen, JIANG Zhen-feng, NOTTEBOOM T, et al. The impact of ship scrapping subsidies on fleet renewal decisions in dry bulk shipping[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 126: 177-189. doi: 10.1016/j.tre.2019.04.008 [39] KARLAFTIS M G, KEPAPTSOGLOU K, SAMBRACOS E. Containership routing with time deadlines and simultaneous deliveries and pick-ups[J]. Transportation Research Part E: Logistics and Transportation Review, 2009, 45(1): 210-221. doi: 10.1016/j.tre.2008.05.001 [40] KEPAPTSOGLOU K, FOUNTAS G, KARLAFTIS M G. Weather impact on containership routing in closed seas: a chance-constraint optimization approach[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 139-155. doi: 10.1016/j.trc.2015.01.027 [41] POLAT O, GUNTHER H O, KULAK O. The feeder network design problem: application to container services in the Black Sea region[J]. Maritime Economics and Logistics, 2014, 16(3): 343-369. doi: 10.1057/mel.2014.2 [42] 杜剑, 赵旭, 计明军. 考虑货主偏好的内支线集装箱班轮航线网络规划模型[J]. 交通运输工程学报, 2017, 17(3): 131-140. doi: 10.3969/j.issn.1671-1637.2017.03.014DU Jian, ZHAO Xu, JI Ming-jun. Planning model of feeder shipping network for container liners under considering shipper perference[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 131-140. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.03.014 [43] SHINTANI K, IMAI A, NISHIMURA E, et al. The container shipping network design problem with empty container repositioning[J]. Transportation Research Part E: Logistics and Transportation Review, 2007, 43(1): 39-59. doi: 10.1016/j.tre.2005.05.003 [44] GELAREH S, MENG Qiang. A novel modeling approach for the fleet deployment problem within a short-term planning horizon[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(1): 76-89. doi: 10.1016/j.tre.2009.06.004 [45] ZHAO Hui, HU Hao, LIN Yi-song. Study on China-EU container shipping network in the context of Northern Sea Route[J]. Journal of Transport Geography, 2016, 53: 50-60. doi: 10.1016/j.jtrangeo.2016.01.013 [46] CHANDRA S, CHRISTIANSEN M, FAGERHOLT K. Combined fleet deployment and inventory management in roll-on/roll-off shipping[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 92: 43-55. doi: 10.1016/j.tre.2016.03.014 [47] MONEMI R N, GELAREH S. Network design, fleet deployment and empty repositioning in liner shipping[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 108: 60-79. doi: 10.1016/j.tre.2017.07.005 [48] NG M W. Distribution-free vessel deployment for liner shipping[J]. European Journal of Operational Research, 2014, 238(3): 858-862. doi: 10.1016/j.ejor.2014.04.019 [49] NG M W. Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand[J]. Transportation Research Part B: Methodological, 2015, 74: 79-87. doi: 10.1016/j.trb.2015.01.004 [50] NG M W, LIN D Y. Fleet deployment in liner shipping with incomplete demand information[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 116: 184-189. doi: 10.1016/j.tre.2018.06.004 [51] GELAREH S, NICKEL S, PISINGER D. Liner shipping hub network design in a competitive environment[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(6): 991-1004. doi: 10.1016/j.tre.2010.05.005 [52] GELAREH S, PISINGER D. Fleet deployment, network design and hub location of liner shipping companies[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(6): 947-964. doi: 10.1016/j.tre.2011.03.002 [53] ASGARI N, FARAHANI R Z, GOH M. Network design approach for hub ports-shipping companies competition and cooperation[J]. Transportation Research Part A: Policy and Practice, 2013, 48: 1-18. doi: 10.1016/j.tra.2012.10.020 [54] ZHENG Jian-feng, MENG Qiang, SUN Zhuo. Liner hub-and-spoke shipping network design[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 75: 32-48. doi: 10.1016/j.tre.2014.12.014 [55] ZHENG Jian-feng, GAO Zi-you, YANG Dong, et al. Network design and capacity exchange for liner alliances with fixed and variable container demands[J]. Transportation Science, 2015, 49(4): 886-899. doi: 10.1287/trsc.2014.0572 [56] ZHENG Jian-feng, YANG Dong. Hub-and-spoke network design for container shipping along the Yangtze River[J]. Journal of Transport Geography, 2016, 55: 51-57. doi: 10.1016/j.jtrangeo.2016.07.001 [57] MOON I K, QIU Z B, WANG J H. A combined tramp ship routing, fleet deployment, and network design problem[J]. Maritime Policy and Management, 2015, 42(1): 68-91. doi: 10.1080/03088839.2013.865847 [58] MENG Qiang, WANG Shuai-an. Liner shipping service network design with empty container repositioning[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(5): 695-708. doi: 10.1016/j.tre.2011.02.004 [59] WANG Shuai-an, LIU Zhi-yuan, MENG Qiang. Segment-based alteration for container liner shipping network design[J]. Transportation Research Part B: Methodological, 2015, 72: 128-145. doi: 10.1016/j.trb.2014.11.011 [60] WANG Shuai-an, MENG Qiang. Liner ship fleet deployment with container transshipment operations[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(2): 470-484. doi: 10.1016/j.tre.2011.10.011 [61] 赵宇哲, 周晶淼, 匡海波, 等. 航运资产整合下海运网络的航线、路径和船舶的集成优化[J]. 系统工程理论与实践, 2018, 38(8): 2110-2122. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201808018.htmZHAO Yu-zhe, ZHOU Jing-miao, KUANG Hai-bo, et al. Integrated optimization for routes, flows and vessels of the shipping network under asset integration[J]. Systems Engineering—Theory and Practice, 2018, 38(8): 2110-2122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201808018.htm [62] WU Shan-hua, SUN Yu, LIAN Feng, et al. Reposition of empty containers of different life stages integrated with liner shipping network design[J]. Maritime Policy and Management, 2019, 1-15. [63] ZHEN Li, HU Yi, WANG Shuai-an, et al. Fleet deployment and demand fulfillment for container shipping liners[J]. Transportation Research Part B: Methodological, 2019, 120: 15-32. doi: 10.1016/j.trb.2018.11.011 [64] HENNIG F, NYGREEN B, CHRISTIANSEN M, et al. Maritime crude oil transportation—a split pickup and split delivery problem[J]. European Journal of Operational Research, 2012, 218(3): 764-774. doi: 10.1016/j.ejor.2011.09.046 [65] SIDDIQUI A W, VERMA M. A bi-objective approach to routing and scheduling maritime transportation of crude oil[J]. Transportation Research Part D: Transport and Environment, 2015, 37: 65-78. doi: 10.1016/j.trd.2015.04.010 [66] DE ASSIS L S, CAMPONOGARA E. A MILP model for planning the trips of dynamic positioned tankers with variable travel time[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 93: 372-388. doi: 10.1016/j.tre.2016.06.009 [67] LI Feng, YANG Dong, WANG Shuai-an, et al. Ship routing and scheduling problem for steel plants cluster alongside the Yangtze River[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 122: 198-210. doi: 10.1016/j.tre.2018.12.001 [68] NORSTAD I, FAGERHOLT K, LAPORTE G. Tramp ship routing and scheduling with speed optimization[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(5): 853-865. doi: 10.1016/j.trc.2010.05.001 [69] 唐磊, 谢新连, 王成武. 基于集合划分的航速可变不定期船舶调度模型[J]. 上海交通大学学报, 2013, 47(6): 909-915. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201306011.htmTANG Lei, XIE Xin-lian, WANG Cheng-wu. Model of tramp ship scheduling with variable speed based on set partition approach[J]. Journal of Shanghai Jiaotong University, 2013, 47(6): 909-915. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201306011.htm [70] YU Bin, WANG Ke-ming, WANG Can, et al. Ship scheduling problems in tramp shipping considering static and spot cargoes[J]. International Journal of Shipping and Transport Logistics, 2017, 9(4): 391-416. doi: 10.1504/IJSTL.2017.084825 [71] 江振峰, 陈东旭, 杨忠振, 等. 基于运输需求时/空特征的不定期船舶运输的调度优化[J]. 交通运输工程学报, 2019, 19(3): 157-165. doi: 10.3969/j.issn.1671-1637.2019.03.016JIANG Zhen-feng, CHEN Dong-xu, YANG Zhong-zhen, et al. Scheduling optimazation of tramp shipping based on temporal and spatial attributes of shipping demand[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 157-165. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.03.016 [72] 寿涌毅, 赖昌涛, 吕如福. 班轮船舶调度多目标优化模型与蚁群算法[J]. 交通运输工程学报, 2011, 11(4): 84-88. http://transport.chd.edu.cn/article/id/201104013SHOU Yong-yi, LAI Chang-tao, LYU Ru-fu. Multi-objective optimization model and ant colony optimization of liner ship scheduling[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 84-88. (in Chinese). http://transport.chd.edu.cn/article/id/201104013 [73] WANG Shuai-an, MENG Qiang, LIU Zhi-yuan. Containership scheduling with transit-time-sensitive container shipment demand[J]. Transportation Research Part B: Methodological, 2013, 54: 68-83. doi: 10.1016/j.trb.2013.04.003 [74] SONG Dong-ping, DONG Jing-xin. Cargo routing and empty container repositioning in multiple shipping service routes[J]. Transportation Research Part B: Methodological, 2012, 46(10): 1556-1575. doi: 10.1016/j.trb.2012.08.003 [75] JEONG Y, SAHA S, CHATTERJEE D, et al. Direct shipping service routes with an empty container management strategy[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 118: 123-142. doi: 10.1016/j.tre.2018.07.009 [76] LI Chen, QI Xiang-tong, SONG Dong-ping. Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events[J]. Transportation Research Part B: Methodological, 2016, 93: 762-788. doi: 10.1016/j.trb.2015.10.004 [77] REINHARDT L B, PISINGER D, SIGURD M M, et al. Speed optimizations for liner networks with business constraints[J]. European Journal of Operational Research, 2020, 285(3): 1127-1140. doi: 10.1016/j.ejor.2020.02.043 [78] CHRISTIANSEN M, FAGERHOLT K, RONEN D. Ship routing and scheduling: status and perspectives[J]. Transportation Science, 2004, 38(1): 1-18. doi: 10.1287/trsc.1030.0036 [79] LIU Huan, FU Ming-liang, JIN Xin-xin, et al. Health and climate impacts of ocean-going vessels in East Asia[J]. Nature Climate Change, 2016, 6: 1037-1042. doi: 10.1038/nclimate3083 [80] WAN Z, ZHU M, CHEN S, et al. Three steps to a green shipping industry[J]. Nature, 2016, 530: 275-277. doi: 10.1038/530275a [81] PSARAFTIS H N, KONTOVAS C A. Balancing the economic and environmental performance of maritime transportation[J]. Transportation Research Part D: Transport and Environment, 2010, 15(8): 458-462. doi: 10.1016/j.trd.2010.05.001 [82] JIANG Li-ping, KRONBAK J, CHRISTENSEN L P. The costs and benefits of sulphur reduction measures: sulphur scrubbers versus marine gas oil[J]. Transportation Research Part D: Transport and Environment, 2014, 28: 19-27. doi: 10.1016/j.trd.2013.12.005 [83] PANASIUK I, TURKINA L. The evaluation of investments efficiency of SOx scrubber installation[J]. Transportation Research Part D: Transport and Environment, 2015, 40: 87-96. doi: 10.1016/j.trd.2015.08.004 [84] LINDSTAD H E, REHN C F, ESKELAND G S. Sulphur abatement globally in maritime shipping[J]. Transportation Research Part D: Transport and Environment, 2017, 57: 303-313. doi: 10.1016/j.trd.2017.09.028 [85] ABADIE L M, GOICOECHEA N, GALARRAGA I. Adapting the shipping sector to stricter emissions regulations: Fuel switching or installing a scrubber?[J]. Transportation Research Part D: Transport and Environment, 2017, 57: 237-250. doi: 10.1016/j.trd.2017.09.017 [86] PATRICKSSON O, ERIKSTAD S O. A two-stage optimization approach for sulphur emission regulation compliance[J]. Maritime Policy and Management, 2017, 44(1): 94-111. doi: 10.1080/03088839.2016.1237781 [87] YANG Z L, ZHANG D, CAGLAYAN O, et al. Selection of techniques for reducing shipping NOx and SOx emissions[J]. Transportation Research Part D: Transport and Environment, 2012, 17(6): 478-486. doi: 10.1016/j.trd.2012.05.010 [88] HU H, YUAN J, NIAN V. Development of a multi-objective decision-making method to evaluate correlated decarbonization measures under uncertainty—the example of international shipping[J]. Transport Policy, 2019, 82: 148-157. doi: 10.1016/j.tranpol.2018.07.010 [89] REN Jing-zheng, LÜTZEN M. Selection of sustainable alternative energy source for shipping: multi-criteria decision making under incomplete information[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1003-1019. doi: 10.1016/j.rser.2017.03.057 [90] REN Jing-zheng, LIANG Han-wei. Measuring the sustainability of marine fuels: a fuzzy group multi-criteria decision making approach[J]. Transportation Research Part D: Transport and Environment, 2017, 54: 12-29. doi: 10.1016/j.trd.2017.05.004 [91] CORBETT J J, WANG Hai-feng, WINEBRAKE J J. The effectiveness and costs of speed reductions on emissions from international shipping[J]. Transportation Research Part D: Transport and Environment, 2009, 14(8): 593-598. doi: 10.1016/j.trd.2009.08.005 [92] CARIOU P. Is slow steaming a sustainable means of reducing CO2 emissions from container shipping?[J]. Transportation Research Part D: Transport and Environment, 2011, 16(3): 260-264. doi: 10.1016/j.trd.2010.12.005 [93] KONTOVAS C A. The green ship routing and scheduling problem (GSRSP): a conceptual approach[J]. Transportation Research Part D: Transport and Environment, 2014, 31: 61-69. doi: 10.1016/j.trd.2014.05.014 [94] 楼狄明, 包松杰, 胡志远, 等. 基于实船油耗与排放的拖轮航速优化[J]. 交通运输工程学报, 2017, 17(1): 93-100. doi: 10.3969/j.issn.1671-1637.2017.01.011LOU Di-ming, BAO Song-jie, HU Zhi-yuan, et al. Cruise speed optimization of tugboat based on real fuel consumption and emission[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 93-100. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.01.011 [95] DOUDNIKOFF M, LACOSTE R. Effect of a speed reduction of containerships in response to higher energy costs in Sulphur Emission Control Areas[J]. Transportation Research Part D: Transport and Environment, 2014, 28: 51-61. doi: 10.1016/j.trd.2014.03.002 [96] FAGERHOLT K, PSARAFTIS H N. On two speed optimization problems for ships that sail in and out of emission control areas[J]. Transportation Research Part D: Transport and Environment, 2015, 39: 56-64. doi: 10.1016/j.trd.2015.06.005 [97] ADLAND R, FONNES G, JIA Hai-ying, et al. The impact of regional environmental regulations on empirical vessel speeds[J]. Transportation Research Part D: Transport and Environment, 2017, 53: 37-49. doi: 10.1016/j.trd.2017.03.018 [98] CARIOU P, CHEAITOU A, LARBI R, et al. Liner shipping network design with emission control areas: a genetic algorithm-based approach[J]. Transportation Research Part D: Transport and Environment, 2018, 63: 604-621. doi: 10.1016/j.trd.2018.06.020 [99] LEE T C, CHANG Y T, LEE P T W. Economy-wide impact analysis of a carbon tax on international container shipping[J]. Transportation Research Part A: Policy and Practice, 2013, 58: 87-102. doi: 10.1016/j.tra.2013.10.002 [100] KOSMAS V, ACCIARO M. Bunker levy schemes for greenhouse gas (GHG) emission reduction in international shipping[J]. Transportation Research Part D: Transport and Environment, 2017, 57: 195-206. doi: 10.1016/j.trd.2017.09.010 [101] ZHU M, YUEN K F, GE J W, et al. Impact of maritime emissions trading system on fleet deployment and mitigation of CO2 emission[J]. Transportation Research Part D: Transport and Environment, 2018, 62: 474-488. doi: 10.1016/j.trd.2018.03.016 [102] DAI W L, FU X W, YIP T L, et al. Emission charge and liner shipping network configuration—an economic investigation of the Asia-Europe route[J]. Transportation Research Part A: Policy and Practice, 2018, 110: 291-305. doi: 10.1016/j.tra.2017.12.005 [103] GU Ye-wen, WALLACE S W, WANG Xin. Can an emission trading scheme really reduce CO2 emissions in the short term?Evidence from a maritime fleet composition and deployment model[J]. Transportation Research Part D: Transport and Environment, 2019, 74: 318-338. doi: 10.1016/j.trd.2019.08.009 -