Reliability analysis of embedded track continuous welded rail on simply supported beam bridge
-
摘要: 为分析关键因素对桥上嵌入式轨道无缝线路力学特性的影响, 并基于可靠性理论对其进行评估, 采用有限元法建立了简支梁桥上嵌入式轨道无缝线路计算模型, 选择高分子材料纵向阻力和梁体温差为随机变量, 并根据实际工况确定了随机变量的分布类型和分布参数; 通过中心组合试验设计方法设计了响应面试验, 采用最小二乘法拟合了随机变量和响应之间的函数关系, 从而建立了轨板相对位移关于高分子材料纵向阻力和梁体温差的二次多项式响应面模型, 通过方差分析验证了所建立模型的正确性, 并采用灵敏度分析方法对随机变量进行了参数敏感性分析; 构建了桥上嵌入式轨道无缝线路长期服役性能的极限状态方程, 综合运用蒙特卡洛法和响应面模型评估了简支梁桥上嵌入式轨道无缝线路的可靠性。分析结果表明: 梁体温差和高分子材料纵向阻力对轨板相位移的灵敏度系数分别为0.99和-0.08, 梁体温差对轨板相对位移的影响远大于高分子材料纵向阻力; 在考虑参数的随机性以后, 温度作用下的轨板相对位移具有一定的离散性, 其主要分布在4.0~6.5 mm范围内, 且近似服从正态分布; 在不采取特殊处理措施的情况下, 不宜在年温差较大的地区建造桥上嵌入式轨道; 提出的桥上嵌入式轨道无缝线路可靠性评估方法可为嵌入式轨道结构的设计提供理论指导。Abstract: To analyze the influences of key factors on the mechanical characteristics of embedded track continuous welded rail on bridges, and evaluate it based on the reliability theory, the finite element method was used to establish the calculation model of embedded track continuous welded rail on the simply supported beam bridge. The longitudinal resistance of polymer material and the temperature difference of beam body were selected as the random variables, and the distribution types and distribution parameters of random variables were determined according to the actual working conditions. The response surface test was designed by the central composite test design method. The function relationship between the random variable and the response was fitted by the least square method. Thus, the quadratic polynomial response surface model of track-bridge relative displacement with respect to the longitudinal resistance of polymer material and the temperature difference of beam body was established. The correctness of the established model was verified by the variance analysis, and the parameter sensitivities of random variables were carried out through the sensitivity analysis method. The limit state equation of long-term service performance of embedded track continuous welded rail on bridges was constructed. The reliability of embedded track continuous welded rail on the simply supported beam bridge was comprehensively evaluated by using the Monte Carlo method and the response surface model. Analysis result shows that the sensitivity coefficients of temperature difference of beam body and longitudinal resistance of polymer material to the track-bridge relative displacement are 0.99 and-0.08, respectively. Therefore, the influence of temperature difference of beam body on the track-bridge relative displacement is much greater than that of the longitudinal resistance of polymer material. After considering the randomnesses of parameters, the track-bridge relative displacement under the action of temperature has a certain dispersion, mainly distributes in the range of 4.0-6.5 mm, and approximately follows the normal distribution. In the absence of special treatment measures, the embedded track on bridges should not be built in areas with large annual temperature difference. The proposed reliability evaluation method of embedded track continuous welded rail on bridges can provide a theoretical guidance for the design of embedded track structure.
-
表 1 计算参数
Table 1. Calculation parameters
类别 参数 数值 60R2槽型轨 截面高度/cm 18 弹性模量/GPa 210 泊松比 0.3 线膨胀系数/℃-1 1.18×10-5 对水平轴的惯性矩/cm4 3 297 简支梁 弹性模量/GPa 35.5 泊松比 0.2 线膨胀系数/℃-1 1.0×10-5 对水平轴的惯性矩/m4 0.99 中性轴距上翼缘距离/m 0.71 中性轴距下翼缘距离/m 0.99 桥墩 纵向刚度/(kN·cm-1) 200 桥台 纵向刚度/(kN·cm-1) 1 500 表 2 随机变量分布类型与分布参数
Table 2. Distribution types and distribution parameters of random variables
随机变量 分布类型与分布参数 高分子材料纵向阻力A 均值为17.5 kN·mm-1, 标准差为2.5 kN·mm-1, 变异系数为0.143的正态分布 梁体温差B 均值为32.5 ℃, 标准差为4.83 ℃, 变异系数为0.149的正态分布 表 3 因素水平
Table 3. Factor levels
因素 不同水平下的因素取值 -2 -1 0 1 2 A/(kN·mm-1) 10.0 12.2 17.5 22.8 25.0 B/℃ 18.00 22.25 32.50 42.75 47.00 表 4 响应面试验
Table 4. Response surface test
试验点 1 2 3 4 5 6 7 8 9 A/(kN·mm-1) 17.50 12.20 17.50 25.00 22.80 17.50 10.00 22.80 12.20 B/℃ 32.50 42.75 18.00 32.50 22.25 47.00 32.50 42.75 22.25 轨板相对位移/mm 5.25 7.11 2.91 5.09 3.51 7.59 5.48 6.75 3.69 表 5 方差分析结果
Table 5. Variance analysis result
类别 平方和 自由度 均方值 F值 P值 响应面模型 23.060 0 5 4.440 0 54 533.600 0 < 0.000 1 A 0.150 0 1 0.150 0 1 829.380 0 < 0.000 1 B 22.040 0 1 22.040 0 270 700.000 0 < 0.000 1 AB 0.008 1 1 0.008 1 99.490 0 0.002 1 A2 0.000 8 1 0.000 8 10.180 0 0.049 7 B2 1.136 0×10-6 1 1.136 0×10-6 0.014 0 0.913 4 残差 0.000 2 3 8.141 0×10-5 总模型 23.060 2 8 表 6 响应面模型误差分析结果
Table 6. Error analysis result of response surface model
响应 R2 Ra2 轨板相对位移 1.000 0 0.999 9 表 7 随机变量对轨板相位移的灵敏度
Table 7. Sensitivities of random variables to track-bridge relative displacement
随机变量 轨板相对位移 高分子材料纵向阻力 灵敏度 -0.08 灵敏度因子/% 7.15 梁体温差 灵敏度 0.99 灵敏度因子/% 92.85 表 8 桥上嵌入式轨道可靠度指标计算结果
Table 8. Calculation result of reliability index of embedded track on bridges
类别 失效概率 可靠度指标 轨板相对位移 2.92×10-3 2.76 -
[1] 林红松, 颜华. 有轨电车埋入式无砟轨道及关键部件型式研究[J]. 铁道工程学报, 2016, 33(6): 60-65. doi: 10.3969/j.issn.1006-2106.2016.06.013LIN Hong-song, YAN Hua. Type research on the embedded ballastless track structures and key components of modern tram way[J]. Journal of Railway Engineering Society, 2016, 33(6): 60-65. (in Chinese). doi: 10.3969/j.issn.1006-2106.2016.06.013 [2] 吴其刚. 现代有轨电车系统发展的重难点及对策研究[J]. 铁道工程学报, 2013, 30(12): 89-92, 98. doi: 10.3969/j.issn.1006-2106.2013.12.019WU Qi-gang. Research on the emphasis and difficulties of modern tramcar system development and its countermeasures[J]. Journal of Railway Engineering Society, 2013, 30(12): 89-92, 98. (in Chinese). doi: 10.3969/j.issn.1006-2106.2013.12.019 [3] LING Liang, HAN Jian, XIAO Xin-biao, et al. Dynamic behavior of an embedded rail track coupled with a tram vehicle[J]. Journal of Vibration and Control, 2016, 23(14): 2355-2372. [4] 陈嵘, 马旭峰, 田春香, 等. 连续梁桥上单元板式无砟轨道纵向变形的控制[J]. 铁道工程学报, 2016, 33(1): 58-64. doi: 10.3969/j.issn.1006-2106.2016.01.012CHEN Rong, MA Xu-feng, TIAN Chun-xiang, et al. Longitudinal deformation control of unit slab non-ballast track on continuous beam bridge[J]. Journal of Railway Engineering Society, 2016, 33(1): 58-64. (in Chinese). doi: 10.3969/j.issn.1006-2106.2016.01.012 [5] RUGE P, BIRK C. Longitudinal forces in continuously welded rails on bridge decks due to nonlinear track-bridge interaction[J]. Computers and Structures, 2007, 85(7/8): 458-475. [6] TOTH J, RUGE P. Spectral assessment of mesh adaptations for the analysis of the dynamical longitudinal behaviour of railway bridges[J]. Archive of Applied Mechanics, 2001, 71(6/7): 453-462. [7] LIU Wen-shuo, DAI Gong-lian, HE Xu-hui. Sensitive factors research for track-bridge interaction of long-span X-style steel-box arch bridge on high-speed railway[J]. Journal of Central South University, 2013, 20(11): 3314-3323. doi: 10.1007/s11771-013-1855-6 [8] 冯青松, 孙魁, 徐金辉, 等. 桥梁温度分布情况对桥上无砟轨道的影响分析[J]. 铁道工程学报, 2018, 35(11): 20-26. doi: 10.3969/j.issn.1006-2106.2018.11.004FENG Qing-song, SUN Kui, XU Jin-hui, et al. Study of influence of the bridge temperature distribution conditions on ballastless track on bridge[J]. Journal of Railway Engineering Society, 2018, 35(11): 20-26. (in Chinese). doi: 10.3969/j.issn.1006-2106.2018.11.004 [9] 王平, 刘浩, 魏贤奎, 等. 铁路斜拉桥上无缝线路纵向力规律分析[J]. 交通运输工程学报, 2013, 13(5): 27-32. doi: 10.3969/j.issn.1671-1637.2013.05.004WANG Ping, LIU Hao, WEI Xian-kui, et al. Analysis of longitudinal force regulation for CWR on railway cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 27-32. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.05.004 [10] 王平, 谢铠泽. 连续刚构桥上无缝线路计算模型及方法的简化[J]. 中南大学学报(自然科学版), 2015, 46(7): 2735-2743. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201507048.htmWANG Ping, XIE Kai-ze. Simplification for calculation model and method of CWR on continuous rigid frame bridge[J]. Journal of Central South University (Science and Technology), 2015, 46(7): 2735-2743. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201507048.htm [11] MIN K H, YUN K M. An experimental study for longitudinal resistance of ballast track on bridge[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2016, 17(5): 173-178. doi: 10.5762/KAIS.2016.17.5.173 [12] 戴公连, 朱俊樸, 闫斌. 30 t轴重重载铁路简支梁桥上无缝线路纵向力研究[J]. 土木工程学报, 2015, 48(8): 60-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201508010.htmDAI Gong-lian, ZHU Jun-pu, YAN Bin. Longitudinal force of continuous welded rail on simply-supported bridge under 30 t axle load heavy haul[J]. China Civil Engineering Journal, 2015, 48(8): 60-69. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201508010.htm [13] 曲村, 高亮, 乔神路. 高速铁路长大桥梁CRTS Ⅰ型板式无砟轨道无缝线路力学特性分析[J]. 铁道标准设计, 2011(4): 12-16. doi: 10.3969/j.issn.1004-2954.2011.04.004QU Cun, GAO Liang, QIAO Shen-lu. Analysis on dynamics property of CRTS Ⅰ ballastless track continuous line on long bridges of high speed railways[J]. Railway Standard Design, 2011(4): 12-16. (in Chinese). doi: 10.3969/j.issn.1004-2954.2011.04.004 [14] 曲村, 高亮, 乔神路, 等. 高速铁路长大桥梁CRTS Ⅰ型双块式无砟轨道无缝线路影响因素分析[J]. 铁道工程学报, 2011, 28(3): 46-51, 63. doi: 10.3969/j.issn.1006-2106.2011.03.009QU Cun, GAO Liang, QIAO Shen-lu, et al. Analysis of influence factors on CRTS Ⅰ double-block ballastless track CWR on long-span bridge of high-speed railway[J]. Journal of Railway Engineering Society, 2011, 28(3): 46-51, 63. (in Chinese). doi: 10.3969/j.issn.1006-2106.2011.03.009 [15] 方利, 王志强, 李成辉. 简支梁桥上CRTS Ⅱ型板式无砟轨道制动力影响因素分析[J]. 铁道学报, 2012, 34(1): 72-76. doi: 10.3969/j.issn.1001-8360.2012.01.013FANG Li, WANG Zhi-qiang, LI Cheng-hui. Analysis on influencing factors of braking force of CRTS Ⅱ ballastless track slab on simply-supported beam bridges[J]. Journal of the China Railway Society, 2012, 34(1): 72-76. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.01.013 [16] 张鹏飞, 桂昊, 雷晓燕, 等. 列车荷载下桥上CRTS Ⅲ型板式无砟轨道挠曲力与位移[J]. 交通运输工程学报, 2018, 18(6): 61-72. http://transport.chd.edu.cn/article/id/201806007ZHANG Peng-fei, GUI Hao, LEI Xiao-yan, et al. Deflection force and displacement of CRTS Ⅲ slab track on bridge under train load[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 61-72. (in Chinese). http://transport.chd.edu.cn/article/id/201806007 [17] 蔡小培, 高亮, 孙汉武, 等. 桥上纵连板式无砟轨道无缝线路力学性能分析[J]. 中国铁道科学, 2011, 32(6): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106006.htmCAI Xiao-pei, GAO Liang, SUN Han-wu, et al. Analysis on the mechanical properties of longitudinally connected ballastless track continuously welded rail on bridge[J]. China Railway Science, 2011, 32(6): 28-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106006.htm [18] DAI Gong-lian, YAN Bin. Longitudinal forces of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges[J]. Journal of Central South University, 2012, 19(8): 2348-2353. [19] 闫斌, 戴公连. 高速铁路斜拉桥上无缝线路纵向力研究[J]. 铁道学报, 2012, 34(3): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201203019.htmYAN Bin, DAI Gong-lian. CWR longitudinal force of cable-stayed bridge of high-speed railway[J]. Journal of the China Railway Society, 2012, 34(3): 83-87. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201203019.htm [20] YAN Bin, DAI Gong-lian, ZHANG Hua-ping. Beam-track interaction of high-speed railway bridge with ballast track[J]. Journal of Central South University, 2012, 19(5): 1447-1453. [21] ZHANG Jiao-long, WU Deng-long, LI Qi. Loading-history-based track-bridge interaction analysis with experimental fastener resistance[J]. Engineering Structures, 2015, 83: 62-73. [22] 李现博. 现代有轨电车嵌入式轨道结构桥上梁轨相互作用研究[D]. 成都: 西南交通大学, 2015.LI Xian-bo. Research on interaction between girder and track on modern trams bridge with the structure of embedded track[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese). [23] 胡燚斌. 地铁用嵌入式轨道桥上无缝线路研究[D]. 成都: 西南交通大学, 2017.HU Yi-bin. Studies of the continuously welded rail on bridge with embedded track for metro[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [24] 冯青松, 孙魁, 罗信伟, 等. 简支梁桥上嵌入式轨道无缝线路优化分析[J]. 华中科技大学学报(自然科学版), 2018, 46(5): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201805023.htmFENG Qing-song, SUN Kui, LUO Xin-wei, et al. Optimization analysis on embedded track continuous welded rail on simple supported beam bridge[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(5): 127-132. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201805023.htm [25] 冯青松, 孙魁, 罗信伟, 等. 简支梁桥上有轨电车嵌入式轨道纵向力分析[J]. 铁道工程学报, 2017, 34(11): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201711007.htmFENG Qing-song, SUN Kui, LUO Xin-wei, et al. Longitudinal force analysis of tram embedded track on simply supported bridge[J]. Journal of Railway Engineering Society, 2017, 34(11): 27-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201711007.htm [26] 冯青松, 孙魁, 雷晓燕, 等. 连续梁桥上有轨电车嵌入式轨道伸缩力分析[J]. 铁道科学与工程学报, 2019, 16(1): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201901007.htmFENG Qing-song, SUN Kui, LEI Xiao-yan, et al. Analysis of expansion-constriction force of tram embedded track on continuous beam bridge[J]. Journal of Railway Science and Engineering, 2019, 16(1): 50-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201901007.htm [27] 谢铠泽, 赵维刚, 蔡小培, 等. 悬索桥初始内力与几何非线性对梁轨相互作用的影响[J]. 交通运输工程学报, 2020, 20(1): 82-91. doi: 10.19818/j.cnki.1671-1637.2020.01.006XIE Kai-ze, ZHAO Wei-gang, CAI Xiao-pei, et al. Impacts of initial internal force and geometric nonlinearity of suspension bridge on bridge-rail interaction[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 82-91. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.01.006 [28] 姜衡, 管贻生, 邱志成, 等. 基于响应面法的立式加工中心动静态多目标优化[J]. 机械工程学报, 2011, 47(11): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201111019.htmJIANG Heng, GUAN Yi-sheng, QIU Zhi-cheng, et al. Dynamic and static multi-objective optimization of a vertical machining center based on response surface method[J]. Journal of Mechanical Engineering, 2011, 47(11): 125-133. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201111019.htm [29] 梁淑娟. 长大桥上CRTS Ⅱ型板式无砟轨道断板影响与可靠性研究[D]. 北京: 北京交通大学, 2017.LIANG Shu-juan. Research on effects of broken plate damage and reliability of CRTSⅡ slab track on long-span bridge[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese). [30] YANG Dong-hui, LI Guo-ping, YI Ting-hua, et al. A performance-based service life design method for reinforced concrete structures under chloride environment[J]. Construction and Building Materials, 2016, 124: 453-461. [31] 陈松坤, 王德禹. 基于神经网络的蒙特卡罗可靠性分析方法[J]. 上海交通大学学报, 2018, 52(6): 687-692. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201806011.htmCHEN Song-kun, WANG De-yu. An improved Monte Carlo reliability analysis method based on neural network[J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 687-692. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201806011.htm [32] 陈仁朋, 江朋, 叶肖伟, 等. 高铁单线路基循环累积变形分析方法及其可靠度分析[J]. 岩石力学与工程学报, 2016, 35(1): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601015.htmCHEN Ren-peng, JIANG Peng, YE Xiao-wei, et al. Analysis approach and reliability analysis of cumulative cyclic deformation of subgrade of single high-speed railway line[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 141-149. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601015.htm -