Influence of environmental wind on fluctuation velocity of contact wire of high-speed railway
-
摘要: 基于空气动力学理论分别推导了作用在接触线上的空气阻尼和脉动风气动载荷, 并将空气动力项添加至接触线波动速度公式中进行修正; 通过风洞试验和CFD绕流仿真得到了横风环境下的气动阻力系数, 分析了不同空气阻尼下接触线波动速度的变化规律; 基于AR模型和接触网的结构特性, 建立了具有时间和空间相关性的接触网脉动风场, 通过仿真计算分析了脉动风速和风攻角对接触线波动速度的影响。研究结果表明: 静风载荷引起的接触线空气阻尼很小, 当平均风速达到30 m·s-1时, 接触线空气阻尼仅为0.3, 接触线波动速度为549.1 km·h-1左右, 因此, 空气阻尼不会对接触线波动速度产生较大影响; 当来流风攻角为60°, 平均风速不大于10 m·s-1时, 脉动风下接触线波动速度标准差和最值差分别小于1和6 km·h-1, 此时接触线波动速度相对无风情况变化较小, 脉动风载荷对接触线波动速度的影响不明显; 当风速达到40 m·s-1时, 接触线平均波动速度较无风情况下降39.39 km·h-1, 且其标准差和最值差分别达到11.84和75.98 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至474.16 km·h-1, 因此, 脉动风下风速越大, 接触线波动速度受脉动风载荷影响越显著; 当风速保持30 m·s-1, 来流风攻角为0°~30°时, 接触线波动速度标准差和最值差分别小于1和5 km·h-1, 此时脉动风载荷对接触线波动速度的影响较小; 当风攻角为90°时, 接触线波动速度标准差和最值差分别达到12.38和73.19 km·h-1, 此时接触线波动速度出现大幅下降与振荡, 最小波动速度低至472.91 km·h-1, 因此, 脉动风下来流风越偏于水平方向, 对接触线波动速度的影响越小。Abstract: The air damping and pulsating wind aerodynamic load acting on the contact wire were respectively deduced based on the aerodynamic theory, and the aerodynamic term was added to correct the formula of fluctuation velocity of contact wire. Through the wind tunnel test and computational fluid dynamics(CFD), the aerodynamic drag coefficient under the transverse wind environment was obtained, and the variation rules of fluctuation velocity of contact wire under different air dampings were analyzed. Based on the AR model and the structural characteristics of catenary, the pulsating wind field of catenary with time and space correlation was established. The influences of pulsating wind speed and wind attack angle on the fluctuation velocity of contact wire were analyzed through the simulation. Research result shows that the air damping of contact wire caused by the static wind load is very small. When the average wind speed reaches 30 m·s-1, the air damping acting on the contact wire is only 0.3, and the fluctuation velocity of contact wire is stable at about 549.1 km·h-1. Therefore, the air damping will not have a great impact on the fluctuation velocity of contact wire. When the wind attack angle of incoming wind is 60°, and the average wind speed is no more than 10 m·s-1, the standard deviation and difference between the maximum and the minimum fluctuation velocities of contact wire under the pulsating wind are less than 1 and 6 km·h-1, respectively. In this case, the fluctuation velocity of contact wire has little change compared with the non-wind condition, and the influence of pulsating wind load on the fluctuation velocity of contact wire is not obvious. When the wind speed reaches 40 m·s-1, the average fluctuation velocity of contact wire decreases by 39.39 km·h-1 compared with the non-wind condition, and the standard deviation and difference between the maximum and the minimum fluctuation velocities reach 11.84 and 75.98 km·h-1, respectively. At this point, the fluctuation velocity of contact wire decreases and oscillates sharply, and the minimum is as low as 474.16 km·h-1. Therefore, the larger the wind speed is under the pulsating wind, the more significant the impact of pulsating wind load is on the fluctuation velocity of contact wire. When the wind speed is maintained at 30 m·s-1, and the attack angle of incoming wind is 0°-30°, the standard deviation and difference between the maximum and the minimum fluctuation velocities are less than 1 and 5 km·h-1, respectively. In this case, the pulsating wind load has little influence on the fluctuation velocity of contact wire. When the wind attack angle is 90°, the standard deviation and difference between the maximum and the minimum fluctuation velocities reach 12.38 and 73.19 km·h-1, respectively. At this point, the fluctuation velocity of contact wire decreases and oscillates sharply, and the minimum is as low as 472.91 km·h-1. Therefore, under the action of pulsating wind, the more the incoming wind tends to the horizontal direction, the less influence it has on the fluctuation velocity of contact wire.
-
Key words:
- high-speed railway /
- contact wire /
- air damping /
- pulsating wind /
- fluctuation velocity /
- wind attack angle
-
表 1 接触网主部件参数
Table 1. Parameters of catenary main parts
部件 类型 张力/N 线密度/(kg·m-1) 抗弯刚度/(N·m-2) 承力索 Bz Ⅱ-120 20 580 1.070 114.5 接触线 CuMg0.5-AC120 26 460 1.070 148.9 表 2 接触网附属部件参数
Table 2. Parameters of catenary accessory parts
参数 取值 参数 取值 跨距/m 54 单跨吊弦个数 7 跨数 3 定位器总数 4 吊弦总数 21 单个定位器质量/kg 2 单跨吊弦间距/m 4.30、8.33、7.04、7.83、7.58、7.42、7.18、4.32 单跨吊弦质量/kg 0.31、0.29、0.28、0.27、0.28、0.29、0.31 表 3 接触线波速测试结果
Table 3. Test result of fluctuation velocity of contact wire
工况号 波动速度/(m·s-1) 工况号 波动速度/(m·s-1) 工况号 波动速度/(m·s-1) 1-1 139.24 2-1 137.85 3-1 138.00 1-2 137.90 2-2 140.96 3-2 139.78 1-3 139.13 2-3 137.00 3-3 140.00 表 4 不同识别方法下的接触线波动速度对比
Table 4. Comparison of fluctuation velocities of contact wire under different identification methods
识别方法 计算公式 波动速度/(m·s-1) 与试验结果的相对误差/% 弦索理论 157.25 13.23 欧拉梁理论 式(4) 157.25 13.23 计及附属部件的修正方程 式(16) 152.03 9.48 试验测试 ΔL/Δt 138.87 表 5 不同空气阻尼下的接触线波动速度统计量
Table 5. Statistics of fluctuation velocity of contact wire under different air dampings
风速/(m·s-1) 阻力系数 空气阻尼 接触线波动速度/(km·h-1) 0 0.000 0.000 549.115 5 1.665 0.081 549.109 10 1.203 0.116 549.102 20 1.105 0.214 549.072 30 1.029 0.300 549.030 表 6 模拟风速谱的计算参数
Table 6. Calculation parameters of simulated wind speed spectrum
参数 取值 参数 取值 地面粗糙度系数 0.003 时间步长/s 0.1 模拟点高度/m 5.3 计算时间/s 100 AR模型阶数 4 模拟点数 19 仿真步长/m 0.1 单位长度计算点数 10 表 7 不同平均风速下接触线波动速度统计量
Table 7. Fluctuation velocity statistics of contact wire at different mean wind speeds
平均风速/(m·s-1) 平均值/(km·h-1) 最大值/(km·h-1) 最小值/(km·h-1) 标准差/(km·h-1) 最值差/(km·h-1) 0 558.35 558.35 558.35 0.000 0.00 5 557.82 558.29 557.06 0.238 1.23 10 556.27 558.21 552.95 0.974 5.26 15 553.12 557.31 547.79 1.797 9.52 20 549.23 557.15 540.29 2.893 16.86 25 543.32 553.14 527.27 4.595 25.87 30 537.95 551.59 512.10 6.723 39.49 35 529.22 551.68 498.26 8.508 53.42 40 518.96 550.14 474.16 11.837 75.98 表 8 不同初始风攻角下接触线波动速度统计量
Table 8. Fluctuation velocity statistics of contact wire at different initial wind attack angles
初始风攻角/(°) 平均值/(km·h-1) 最大值/(km·h-1) 最小值/(km·h-1) 标准差/(km·h-1) 最值差/(km·h-1) 0 558.34 558.35 558.31 0.002 0.04 15 558.20 558.32 558.01 0.052 0.31 30 556.15 557.68 553.45 0.718 4.23 45 549.41 555.44 538.33 2.917 17.11 60 537.95 551.59 512.10 6.723 39.49 75 526.36 547.73 484.84 10.662 62.89 90 521.41 546.10 472.91 12.378 73.19 -
[1] BRUNI S, BUCCA G, CARNEVALE M, et al. Pantograph-catenary interaction: recent achievements and future research challenges[J]. International Journal of Rail Transportation, 2018, 6(2): 57-82. doi: 10.1080/23248378.2017.1400156 [2] WU Tian-xing, BRENNAN M J. Dynamic stiffness of a railway overhead wire system and its effect on pantograph-catenary system dynamics[J]. Journal of Sound and Vibration, 1999, 219(3): 483-502. doi: 10.1006/jsvi.1998.1869 [3] 吴燕, 吴俊勇, 郑积浩. 高速弓网系统动态振动性能的仿真研究[J]. 铁道学报, 2009, 31(5): 113-117. doi: 10.3969/j.issn.1001-8360.2009.05.019WU Yan, WU Jun-yong, ZHENG Ji-hao. Simulation of dynamic behavior of high-speed pantograph-catenary system[J]. Journal of the China Railway Society, 2009, 31(5): 113-117. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.05.019 [4] 莫志刚, 邹栋, 周宁. 接触网波速的仿真识别及试验验证[J]. 中国铁道科学, 2018, 39(4): 107-113. doi: 10.3969/j.issn.1001-4632.2018.04.16MO Zhi-gang, ZOU Dong, ZHOU Ning. Simulation recognition and test verification of catenary wave velocity[J]. China Railway Science, 2018, 39(4): 107-113. (in Chinese). doi: 10.3969/j.issn.1001-4632.2018.04.16 [5] ZHOU Ning, LI Rui-ping, WANG Shi-xuan. Investigation on the wave propagation characteristics of the catenary[C]//Civil-Comp Press. Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance. Corsica: Civil-Comp Press, 2014, DOI: 10.4203/ccp.104.143. [6] ABOSHI M, MANABE K. Analyses of contact force fluctuation between catenary and pantograph[J]. Quarterly Reports of Railway Technical Research Institute, 2000, 41(4): 182-187. [7] DAHLBERG T. Moving force on an axially loaded beam-with applications to a railway overhead contact wire[J]. Vehicle System Dynamics, 2006, 44(8): 631-644. doi: 10.1080/00423110500165523 [8] HAYASAKA T. Effect of reduced reflective wave propagation on overhead contact line in overlap section[J]. Quarterly Reports of Railway Technical Research Institute, 2004, 45(2): 68-73. [9] PARK S Y, JEON B U, LEE J M, et al. Measurement of low-frequency wave propagation in a railway contact wire with dispersive characteristics using wavelet transform[J]. Key Engineering Materials, 2006, 321-323: 1609-1615. doi: 10.4028/www.scientific.net/KEM.321-323.1609 [10] 常丽. 考虑接触网零部件影响的接触网波动速度研究[J]. 铁道学报, 2013, 35(11): 35-38. doi: 10.3969/j.issn.1001-8360.2013.11.006CHANG Li. The research on the fluctuation velocity of catenary under the effect of auxiliary parts[J]. Journal of the China Railway Society, 2013, 35(11): 35-38. (in Chinese). doi: 10.3969/j.issn.1001-8360.2013.11.006 [11] 刘志刚, 韩志伟, 侯运昌, 等. 计及空气阻尼影响的接触线波动速度修正研究[J]. 铁道学报, 2013, 35(1): 41-46. doi: 10.3969/j.issn.1001-8360.2013.01.006LIU Zhi-gang, HAN Zhi-wei, HOU Yun-chang, et al. Modified formula of wave motion velocity of catenary inclusive of air damping[J]. Journal of the China Railway Society, 2013, 35(1): 41-46. (in Chinese). doi: 10.3969/j.issn.1001-8360.2013.01.006 [12] 李夫忠. 接触网波动特性及提高波速利用率途径的研究[D]. 成都: 西南交通大学, 2012.LI Fu-zhong. Study on wave motion of catenary and ways to increase the ratio of wave speed[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese). [13] METRIKINE A V, BOSCH A L. Dynamic response of a two-level catenary to a moving load[J]. Journal of Sound and Vibration, 2005, 292(3/4/5): 676-693. [14] 吕青松. 接触网波动特性及其传播规律研究[D]. 成都: 西南交通大学, 2015.LYU Qing-song. Research on wave characteristics and propagation rules of catenary[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese). [15] 吴家岚. 高速铁路接触网风致响应分析[D]. 成都: 西南交通大学, 2008.WU Jia-lan. The study of wind-induced response for catenary system of high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese). [16] 李瑞平, 周宁, 张卫华, 等. 基于AR模型的接触网脉动风场与风振响应[J]. 交通运输工程学报, 2013, 13(4): 56-62. http://transport.chd.edu.cn/article/id/201304009LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Fluctuating wind field and wind-induced vibration response of catenary based on AR model[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 56-62. (in Chinese). http://transport.chd.edu.cn/article/id/201304009 [17] POMBO J, AMBRÓSIO J, PEREIRA M, et al. Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains[J]. Vehicle System Dynamics, 2009, 47(11): 1327-1347. doi: 10.1080/00423110802613402 [18] 李瑞平, 周宁, 吕青松, 等. 横风环境中弓网动力学性能分析[J]. 振动与冲击, 2014, 33(24): 39-44, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201424007.htmLI Rui-ping, ZHOU Ning, LYU Qing-song, et al. Pantograph-catenary dynamic behavior under cross wind[J]. Journal of Vibration and Shock, 2014, 33(24): 39-44, 53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201424007.htm [19] 谢强, 支希. 张力对接触网系统风振响应影响的风洞试验研究[J]. 西南交通大学学报, 2018, 53(5): 1009-1016. doi: 10.3969/j.issn.0258-2724.2018.05.018XIE Qiang, ZHI Xi. Wind tunnel test of tension effects on vibration responses of catenary system[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1009-1016. (in Chinese). doi: 10.3969/j.issn.0258-2724.2018.05.018 [20] 宋洋, 刘志刚, 汪宏睿. 高速铁路覆冰接触线气动系数研究与风振响应分析[J]. 铁道学报, 2014, 36(9): 20-27. doi: 10.3969/j.issn.1001-8360.2014.09.04SONG Yang, LIU Zhi-gang, WANG Hong-rui. Study on aerodynamic parameters and wind vibration responses of iced contact wires of high-speed railways[J]. Journal of the China Railway Society, 2014, 36(9): 20-27. (in Chinese). doi: 10.3969/j.issn.1001-8360.2014.09.04 [21] 王圣昆, 刘明光, 李光泽, 等. 计及风沙流影响的接触线振动响应研究[J]. 铁道科学与工程学报, 2018, 15(9): 2335-2342. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809021.htmWANG Sheng-kun, LIU Ming-guang, LI Guang-ze, et al. Study on vibration responses of contact wire with the impact of wind sand flow[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2335-2342. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809021.htm [22] WANG Ying, LIU Zhi-gang, MU Xiu-qing, et al. An extended Habedank's equation-based EMTP model of pantograph arcing considering pantograph-catenary interactions and train speeds[J]. IEEE Transactions on Power Delivery, 2016, 31(3): 1186-1194. doi: 10.1109/TPWRD.2015.2500260 [23] CHEN Xiao-qiang, ZHANG Xi, WANG Ying, et al. Improved study on the fluctuation velocity of high-speed railway catenary considering the influence of accessory parts[J]. IEEE Access, 2020, 8: 138710-138718. doi: 10.1109/ACCESS.2020.3011415 [24] 韩南南, 杨俭, 袁天辰, 等. 基于离散小波变换的接触网横向风振响应研究[J]. 铁道学报, 2016, 38(11): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201611006.htmHAN Nan-nan, YANG Jian, YUAN Tian-chen, et al. Transverse wind vibration of catenary based on discrete wavelet transform[J]. Journal of the China Railway Society, 2016, 38(11): 43-49. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201611006.htm [25] 姜静. 基于频率分析的高速铁路弓网参数匹配研究[D]. 成都: 西南交通大学, 2016.JIANG Jing. Research on coupling performance between pantograph and catenary parameters based on frequency analysis[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese). [26] SONG Yang, LIU Zhi-gang, OUYANG Hua-jiang, et al. Sliding mode control with PD sliding surface for high-speed railway pantograph-catenary contact force under strong stochastic wind field[J]. Shock and Vibration, 2017, 2017: 1-16. [27] SONG Yang, LIU Zhi-gang, WANG Hong-rui, et al. Nonlinear analysis of wind-induced vibration of high-speed railway catenary and its influence on pantograph-catenary interaction[J]. Vehicle System Dynamics, 2016, 54(6): 723-747. [28] 陈伟, 宗智. 二维圆柱绕流的离散涡数值模拟[J]. 舰船科学技术, 2010, 32(5): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201005031.htmCHEN Wei, ZONG Zhi. Numerical simulation of two-dimensional flow around circular cylinder using discrete vortex method[J]. Ship Science and Technology, 2010, 32(5): 111-115. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201005031.htm [29] DAVENPORT A G. The spectrum of horizontal gustiness near the ground in high winds[J]. Quarterly Journal of the Royal Meteorological Society, 1961, 87(372): 194-211. [30] PANOFSKY H A, MCCORMICK R A. The spectrum of vertical velocity near the surface[J]. Quarterly Journal of the Royal Meteorological Society, 1960, 86(370): 495-503. [31] LIU Zhi-gang, SONG Yang, HAN Ye, et al. Advances of research on high-speed railway catenary[J]. Journal of Modern Transportation, 2018, 26(1): 1-23. -