Effective protection distance of HDPE board fence in Golmud-Korla Railway
Article Text (Baidu Translation)
-
摘要: 以格库铁路现场风沙试验段为研究对象, 运用数值模拟方法研究了HDPE板栅栏周围的风沙流场, 给出了不同初始风速下HDPE板栅栏有效防护距离与其孔隙率和高度的关系, 研究结果表明: 气流经过HDPE板栅栏时, 气流速度在栅栏前降低较快, 在栅栏后恢复较快, 经过一段距离后逐渐恢复到初始风速, 气流速度整体呈V形分布, 气流速度增减幅度随HDPE板栅栏孔隙率的增大逐渐减小; 在同一孔隙率下, 初始风速分别为6、24 m·s-1时, HDPE板栅栏背风侧回流区相差4.5倍HDPE板栅栏的高度; 孔隙率为60%时, 最小气流速度为8.9 m·s-1, HDPE板栅栏背风侧回流消失; 随着HDPE板孔隙率的增大, 最小气流速度逐渐增大; HDPE板栅栏的孔隙率存在不产生栅栏背风侧回流区的界限孔隙率, 为40%~60%;孔隙率小于50%时, 随着HDPE板孔隙率的增大, 有效防护距离逐渐增大, 孔隙率大于50%时, 随着HDPE板孔隙率的增大, 有效防护距离逐渐减小, 当孔隙率趋于100%时, 其有效防护距离趋于0, 因此, HDPE板栅栏的最优孔隙率为50%;随着高度的增加, HDPE板栅栏背风侧恢复到初始风速的距离增加, 同一风速下, 孔隙率为50%的HDPE板栅栏的有效防护距离是孔隙率为25%的HDPE板栅栏的1.35倍; 在现场布设HDPE板栅栏时建议使用40%~50%孔隙率的栅栏, 在经济条件允许的情况下可考虑适当增加栅栏高度, 以保证路基免受风沙侵蚀。Abstract: The field sand test section of the Golmud-Korla Railway was taken as the research object, and the sand flow field around the HDPE board fence was studied through the numerical simulation. The relationships between the effective protection distance of HDPE board fence and its porosity and height under different initial wind speeds was given. Research result shows that when the air flow passes through the HDPE board fence, the air flow speed decreases rapidly in front of the fence, and recovers quickly after the fence. After a certain distance, it gradually returns to the initial wind speed. The air flow speed is distributed in a V shape. The trends of air flow speed reduction and increase gradually decrease with the increase of the porosity of HDPE board fence. Under the same porosity, when the initial wind speed is 6, 24 m·s-1, respectively, the difference between the recirculation zone on the leeward side of HDPE board fence is 4.5 times of the height of HDPE board fence. When the porosity is 60%, the minimum air wind speed is 8.9 m·s-1, and the backflow on the leeward side of HDPE board fence disappears. As the porosity of HDPE board fence increases, the minimum air flow speed gradually increases. The porosity of HDPE board fence has a limit porosity that the leeward side of fence does not occur, which is 40%-60%. When the porosity is less than 50%, the effective protection distance increases gradually as the porosity of HDPE board increases. When the porosity is greater than 50%, as the porosity of HDPE board increases, the effective protection distance decreases gradually. When the porosity tends to 100%, its effective protection distance is almost 0. Therefore, the optimal porosity of HDPE board fence is 50%. As the height increases, the distance of returning to the initial wind speed after the fence increases. Under the same wind speed, the effective protection distance of HDPE board fence with 50% porosity is 1.35 times of that with 25% porosity. The HDPE board fence with 40%-50% porosity is suggested to use when installing on site. The height of fence should appropriately increase if the economy permits, so as to ensure the roadbed being free from the sand erosion.
-
Key words:
- railway /
- fence /
- porosity /
- height /
- numerical simulation /
- effective protection distance
-
-
[1] 蒋富强, 李荧, 李凯崇, 等. 兰新铁路百里风区风沙流结构特性研究[J]. 铁道学报, 2010, 32(3): 105-110. doi: 10.3969/j.issn.1001-8360.2010.03.019JIANG Fu-qiang, LI Ying, LI Kai-chong, et al. Study on structural characteristics of Gobi wind sand flow in 100 km wind area along Lan-Xin Railway[J]. Journal of the China Railway Society, 2010, 32(3): 105-110. (in Chinese). doi: 10.3969/j.issn.1001-8360.2010.03.019 [2] 屈建军, 凌裕泉, 井哲帆, 等. 包兰铁路沙坡头段风沙运动规律及其防护体系的相互作用[J]. 中国沙漠, 2007, 27(4): 529-533. doi: 10.3321/j.issn:1000-694X.2007.04.001QU Jian-jun, LING Yu-quan, JING Zhe-fan, et al. Interaction between sand blown activity and protection system in Shapotou Section of Baotou-Lanzhou Railway[J]. Journal of Desert Research, 2007, 27(4): 529-533. (in Chinese). doi: 10.3321/j.issn:1000-694X.2007.04.001 [3] 刘世海, 冯玲正, 许兆义. 青藏铁路格拉段高立式沙障防风固沙效果研究[J]. 铁道学报, 2010, 32(1): 133-136. doi: 10.3969/j.issn.1001-8360.2010.01.024LIU Shi-hai, FENG Ling-zheng, XU Zhao-yi. Study on effect of wind erosion controlling in the Geerm-Lahsa Section of the Qinghai-Tibet Railway[J]. Journal of the China Railway Society, 2010, 32(1): 133-136. (in Chinese). doi: 10.3969/j.issn.1001-8360.2010.01.024 [4] 屈建军, 凌裕泉, 俎瑞平, 等. 半隐蔽格状沙障的综合防护效益观测研究[J]. 中国沙漠, 2005(3): 329-335. doi: 10.3321/j.issn:1000-694X.2005.03.005QU Jian-jun, LING Yu-quan, ZU Rui-ping, et al. Study on comprehensive sand-protecting efficiency of semi-buried checkerboard sand-barriers[J]. Journal of Desert Research, 2005(3): 329-335. (in Chinese). doi: 10.3321/j.issn:1000-694X.2005.03.005 [5] 汪言在, 伍永秋, 苟诗薇. 塔克拉玛干沙漠中部地区两类半隐蔽格状沙障内部沉积粒度特征浅析[J]. 中国沙漠, 2009, 29(6): 1056-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200906009.htmWANG Yan-zai, WU Yong-qiu, GOU Shi-wei. Study on grain size characters in different material semi-buried checkerboard in the center area of Taklimakan Desert[J]. Journal of Desert Research, 2009, 29(6): 1056-1062. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200906009.htm [6] 孙涛, 刘虎俊, 朱国庆, 等. 3种机械沙障防风固沙功能的时效性[J]. 水土保持学报, 2012, 26(4): 12-16, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201204003.htmSUN Tao, LIU Hu-jun, ZHU Guo-qing, et al. Timeliness of reducing wind and stabilizing sand functions of three mechanical sand fences in arid region[J]. Journal of Soil and Water Conservation, 2012, 26(4): 12-16, 22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201204003.htm [7] MILLER D R, ROSENBORG N J, BRAGLEY W T. Wind reduction by a highly permeable tree shelter belt[J]. Agricultural Meteorology, 1974, 14(1/2): 321-333. [8] SCHWARTZ R C, FRYREAR D W, HARRIS B L, et al. Mean flow and shear stress distributions as influenced by vegetative windbreak structure[J]. Agricultural and Forest Meteorology, 1995, 75(1/2/3): 1-22. [9] PACKWOOD A R. Flow through porous fences in thick boundary layers: comparisons between laboratory and numerical experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(1): 75-90. doi: 10.1016/S0167-6105(00)00025-8 [10] LEE S J, PARK K C, PARK C W. Wind tunnel observation about the shelter effect of porous fences on the sand particle movement[J]. Atmospheric Environment, 2002, 36(9): 1453-1463. doi: 10.1016/S1352-2310(01)00578-7 [11] WANG Tao, QU Jian-jun, LING Yu-quan, et al. Shelter effect efficacy of sand fences: a comparison of systems in a wind tunnel[J]. Aeolian Research, 2018, 30: 32-40. doi: 10.1016/j.aeolia.2017.11.004 [12] CHENG Hong, HE Jia-jia, ZOU Xue-yong, et al. Characteristics of particle size for creeping and saltating sand grains in Aeolian Transport[J]. Sedimentology, 2015, 62(5): 1497-1511. doi: 10.1111/sed.12191 [13] ZHANG Ke-cun, QU Jian-jun, LIAO Kong-tai, et al. Damage by wind-blown sand and its control along Qinghai-Tibet Railway in China[J]. Aeolian Research, 2010, 1(3/4): 143-146. [14] WANG Tao, QU Jian-jun, LING Yu-quan, et al. Wind tunnel test on the effect of metal net fences on sand flux in a Gobi Desert, China[J]. Journal of Arid Land, 2017, 9(6): 888-899. doi: 10.1007/s40333-017-0068-5 [15] DONG Zhi-bao, LUO Wan-yin, QIAN Guang-qiang, et al. A wind tunnel simulation of the mean velocity fields behind upright porous fences[J]. Agricultural and Forest Meteorology, 2007, 146(1/2): 82-93. [16] DONG Zhi-bao, QIAN Guang-qiang, LUO Wan-yin, et al. Threshold velocity for wind erosion: the effects of porous fences[J]. Environmental Geology, 2006, 51(3): 471-475. doi: 10.1007/s00254-006-0343-9 [17] CHENG Jian-jun, JIANG Fu-qiang, XUE Chun-xiao, et al. Characteristics of the disastrous wind-sand environment along railways in the Gobi Area of Xinjiang, China[J]. Atmospheric Environment, 2015, 102: 344-354. doi: 10.1016/j.atmosenv.2014.12.018 [18] HUANG Ning, ZHENG Xiao-jing, ZHOU You-he. A multi-objective optimization method for probability density function of lift-off speed of wind-blown sand movement[J]. Advances in Engineering Software, 2006, 37(1): 32-40. doi: 10.1016/j.advengsoft.2005.03.015 [19] 李凯崇, 刘贺业, 蒋富强, 等. 斜插板挡沙墙风沙防治现场试验研究[J]. 中国铁道科学, 2013, 34(2): 46-51. doi: 10.3969/j.issn.1001-4632.2013.02.09LI Kai-chong, LIU He-ye, JIANG Fu-qiang, et al. Field test study on the prevention and treatment of wind drift sand by retaining wall with inclined plank[J]. China Railway Science, 2013, 34(2): 46-51. (in Chinese). doi: 10.3969/j.issn.1001-4632.2013.02.09 [20] 康向光, 李生宇, 王海峰, 等. 高立式沙障不同叠加模式的阻沙量对比分析[J]. 干旱区研究, 2013, 30(3): 550-555. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201303025.htmKANG Xiang-guang, LI Sheng-yu, WANG Hai-feng, et al. Deposited-sand volume of high vertical sand barrier under different stacking modes[J]. Arid Zone Research, 2013, 30(3): 550-555. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201303025.htm [21] CHENG Jian-jun, LEI Jia-qiang, LI Sheng-yu, et al. Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics[J]. Aeolian Research, 2016, 21: 139-150. doi: 10.1016/j.aeolia.2016.04.008 [22] XIN Lin-gui, CHENG Jian-jun, CHEN Bo-yu, et al. The motion rule of sand particles under control of the sand transportation engineering[J]. Wind and Structures, 2018, 27(4): 213-221. [23] 张凯, 王起才, 杨子江, 等. 新建格库铁路HDPE板高立式沙障防风效益数值模拟研究[J]. 铁道学报, 2019, 41(3): 169-175. doi: 10.3969/j.issn.1001-8360.2019.03.023ZHANG Kai, WANG Qi-cai, YANG Zi-jiang, et al. Research on numerical simulation on wind protection benefits of HDPE panels with high vertical sand barrier in the newly-built Golmud-Korla Railway[J]. Journal of the China Railway Society, 2019, 41(3): 169-175. (in Chinese). doi: 10.3969/j.issn.1001-8360.2019.03.023 [24] 张凯, 赵沛雯, 张兴鑫, 等. 风速廓线形式对HDPE板高立式沙障风沙流场的差异性研究[J]. 铁道学报, 2020, 42(9): 143-149. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202009018.htmZHANG Kai, ZHAO Pei-wen, ZHANG Xing-xin, et al. Study on difference of wind-sand flow field of HDPE board high vertical sand fence by wind velocity profile[J]. Journal of the China Railway Society, 2020, 42(9): 143-149. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202009018.htm [25] 程建军, 智凌岩, 薛春晓. 箱体式活动沙障风沙流场特征[J]. 交通运输工程学报, 2017, 17(5): 61-70. http://transport.chd.edu.cn/article/id/201705006CHENG Jian-jun, ZHI Ling-yan, XUE Chun-xiao. Characteristic of wind-sand flow field of box-type movable sand barrier[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 61-70. (in Chinese). http://transport.chd.edu.cn/article/id/201705006 [26] WANG Tao, QU Jian-jun, NIU Qing-he, et al. Comparative study of the shelter efficacy of straw checkerboard barriers and rocky checkerboard barriers in a wind tunnel[J]. Aeolian Research, 2020, 43: 100575. doi: 10.1016/j.aeolia.2020.100575 [27] 董治宝, 郑晓静. 中国风沙物理研究50a(Ⅱ)[J]. 中国沙漠, 2005, 25(6): 795-815. doi: 10.3321/j.issn:1000-694X.2005.06.001DONG Zhi-bao, ZHENG Xiao-jing. Research achievements in aeolian physics in China for last five decades (Ⅱ)[J]. Journal of Desert Research, 2005, 25(6): 795-815. (in Chinese). doi: 10.3321/j.issn:1000-694X.2005.06.001 [28] 屈建军, 凌裕泉, 刘宝军, 等. 我国风沙防治工程研究现状及发展趋势[J]. 地球科学进展, 2019, 34(3): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201903002.htmQU Jian-jun, LING Yu-quan, LIU Bao-jun, et al. The research status and development trends of wind-sand engineering in China[J]. Advances in Earth Science, 2019, 34(3): 225-231. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201903002.htm [29] 屈建军, 刘贤万, 雷加强, 等. 尼龙网栅栏防沙效应的风洞模拟试验[J]. 中国沙漠, 2001, 21(3): 276-280. doi: 10.3321/j.issn:1000-694X.2001.03.013QU Jian-jun, LIU Xian-wan, LEI Jia-qiang, et al. Simulation experiments on sand-arresting effect of nylon net fence in wind tunnel[J]. Journal of Desert Research, 2001, 21(3): 276-280. (in Chinese). doi: 10.3321/j.issn:1000-694X.2001.03.013 [30] TAN Li-hai, AN Zhi-shan, ZHANG Kai, et al. Intermittent aeolian saltation over a Gobi surface: threshold, saltation layer height, and high-frequency variability[J]. Journal of Geophysical Research: Earth Science, 2020, DOI: 10.1029/2019JF005329. -