留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车身粘接结构断裂失效准则改进

那景新 娄菲 纪俊栋 李锋

那景新, 娄菲, 纪俊栋, 李锋. 车身粘接结构断裂失效准则改进[J]. 交通运输工程学报, 2020, 20(5): 116-124. doi: 10.19818/j.cnki.1671-1637.2020.05.009
引用本文: 那景新, 娄菲, 纪俊栋, 李锋. 车身粘接结构断裂失效准则改进[J]. 交通运输工程学报, 2020, 20(5): 116-124. doi: 10.19818/j.cnki.1671-1637.2020.05.009
NEI Jing-xin, LOU Fei, JI Jun-dong, LI Feng. Improvement of fracture failure criterion of body adhesive structure[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 116-124. doi: 10.19818/j.cnki.1671-1637.2020.05.009
Citation: NEI Jing-xin, LOU Fei, JI Jun-dong, LI Feng. Improvement of fracture failure criterion of body adhesive structure[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 116-124. doi: 10.19818/j.cnki.1671-1637.2020.05.009

车身粘接结构断裂失效准则改进

doi: 10.19818/j.cnki.1671-1637.2020.05.009
基金项目: 

51775230 51775230

详细信息
    作者简介:

    那景新(1957-), 男, 黑龙江哈尔滨人, 吉林大学教授, 从事车身结构设计理论与轻量化技术研究

    通讯作者:

    李锋(1977-), 男, 湖南永顺人, 吉林大学副教授, 工学博士

  • 中图分类号: U270.12

Improvement of fracture failure criterion of body adhesive structure

Funds: 

National Natural Science Foundation of China 51775230

More Information
Article Text (Baidu Translation)
  • 摘要: 为了解决现有失效准则无法满足粘接结构真实失效预测的问题, 利用试验测试与仿真分析相结合的方法建立一种基于应力的断裂失效准则; 设计了5组典型拉剪比的ISR-7008/铝合金粘接接头, 并对5组不同拉剪比的粘接接头进行准静态拉伸试验, 获得了初始断裂载荷与最大断裂载荷, 确定了胶层断裂失效点的起始位置; 建立了粘接接头的仿真模型并在仿真模型中施加初始断裂载荷, 提取出5组典型拉剪比的接头失效区域内初始断裂点的各种应力; 通过对失效点的各种应力进行比值和线性组合处理, 得出等效应力计算公式, 基于该等效应力计算公式建立适用于粘接结构的初始失效和后续失效统一的失效准则; 设计了验证试验方案, 通过对比试验结果和仿真结果, 分析了失效准则的有效性。分析结果表明: 在75°嵌接接头中, 仿真分析获得的失效载荷为1 717.6 N, 试验测试获得的失效载荷为1 936.4 N, 试验和仿真的相对误差为11.3%;仿真结果与试验测试的胶层失效过程基本吻合, 验证了本文建立的失效准则的有效性。建立的基于应力的失效准则实现了粘接结构初始失效准则和后续失效准则的统一, 可以较为准确地预测复杂应力状态下粘接接头的失效过程, 并且该失效准则解决了弹性粘接剂厚胶层的仿真问题, 为工程实际应用中的粘接结构强度设计提供了一定参考。

     

  • 图  1  嵌接接头几何尺寸

    Figure  1.  Geometric dimensions of scarph joint

    图  2  对接和剪切接头拉伸试验

    Figure  2.  Tensile tests of butt joint and shear joint

    图  3  测试现场

    Figure  3.  Test site

    图  4  60°嵌接接头断裂破坏过程

    Figure  4.  Fracture failure process of 60° scarph joint

    图  5  60°嵌接接头有限元模型边界条件

    Figure  5.  Finite element model boundary conditions of 60° scarph joint

    图  6  60°嵌接接头胶层单元失效点区域

    Figure  6.  Failure point areas of rubber layer element for 60° scarph joint

    图  7  60°嵌接接头胶层单元的Mises等效应力

    Figure  7.  Mises equivalent stresses of rubber layer element for 60° scarph joint

    图  8  应力全量第2不变量的拟合曲线

    Figure  8.  Fitting curve o f second invariant of full amount of stress

    图  10  75°嵌接接头破坏过程

    Figure  10.  Failure process of 75° scarph joint

    图  11  75°嵌接接头仿真失效过程

    Figure  11.  Simulation failure process of 75° scarph joint

    表  1  平均初始断裂载荷与平均最大断裂载荷

    Table  1.   Average initial fracture loads and average maximum fracture loads

    接头形式 平均初始断裂载荷/N 平均最大断裂载荷/N
    剪切接头 1 290.0 1 392.5
    30°嵌接接头 2 000.0 2 681.5
    45°嵌接接头 1 500.0 1 717.0
    60°嵌接接头 1 100.0 1 448.0
    对接接头 1 200.0 1 431.5
    下载: 导出CSV
  • [1] 欧阳明高. 我国节能与新能源汽车发展战略与对策[J]. 汽车工程, 2006, 28(4): 317-321. doi: 10.3321/j.issn:1000-680X.2006.04.001

    OUYANG Ming-gao. Development strategy and counter measures of domestic energy saving and new energy vehicles[J]. Automotive Engineering, 2006, 28(4): 317-321. (in Chinese). doi: 10.3321/j.issn:1000-680X.2006.04.001
    [2] 谭伟, 那景新, 范以撒, 等. 考虑温度和载荷影响的动车信息窗粘接结构寿命预测[J]. 交通运输工程学报, 2019, 19(6): 101-110. doi: 10.3969/j.issn.1671-1637.2019.06.011

    TAN Wei, NA Jing-xin, FAN Yi-sa, et al. Adhesive structure life prediction of EMU information window considering influence of temperature and load[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 101-110. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.06.011
    [3] 武万斌, 年雪山. 汽车轻量化技术发展趋势[J]. 汽车工程师, 2017(1): 15-17. doi: 10.3969/j.issn.1674-6546.2017.01.002

    WU Wan-bin, NIAN Xue-shan. Development of vehicle lightweight technology[J]. Auto Engineer, 2017(1): 15-17. (in Chinese). doi: 10.3969/j.issn.1674-6546.2017.01.002
    [4] HE Xiao-cong. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 248-264. doi: 10.1016/j.ijadhadh.2011.01.006
    [5] 王欣. 汽车轻量化车身智能工厂精益化设计方案研究[D]. 长春: 吉林大学, 2018.

    WANG Xin. Research on the lean design scheme of light weight car body intelligent manufacture[D]. Changchun: Jilin University, 2018. (in Chinese).
    [6] AVENDANO R, CARBAS R J C, MARQUES E A S, et al. Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive[J]. Composite Structures, 2016, 152: 34-44. doi: 10.1016/j.compstruct.2016.05.034
    [7] CHEN Qiu-ren, GUO Hai-ding, AVERY, et al. Fatigue performance and life estimation of automotive adhesive joints using a fracture mechanics approach[J]. Engineering Fracture Mechanics, 2017, 172: 73-89. doi: 10.1016/j.engfracmech.2017.01.005
    [8] 张婧, 于今, 熊磊, 等. 车用碳纤维复合材料性能及成型工艺[J]. 科技导报, 2016, 34(8): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201608015.htm

    ZHANG Jing, YU Jin, XIONG Lei, et al. Performance and molding processes of automotive carbon fiber reinforced plastics[J]. Science and Technology Review, 2016, 34(8): 26-30. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201608015.htm
    [9] 张永祥. 环氧树脂胶黏剂胶粘接结构性能的实验和理论研究[D]. 郑州: 郑州大学, 2014.

    ZHANG Yong-xiang. The mechanics performance experiments and theoretical research of the epoxy bonding structure[D]. Zhengzhou: Zhengzhou University, 2014. (in Chinese).
    [10] 游敏, 郑小玲. 金属胶接接头力学性能测试方法分析[J]. 葛洲坝水电工程学院学报, 1994, 16(2): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC199402016.htm

    YOU Min, ZHENG Xiao-ling. Analysis on the testing methods of mechanical properties in metal to metal adhesive Joints[J]. Journal of Gezhouba Institute of Hydroelectric Engineering, 1994, 16(2): 71-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC199402016.htm
    [11] 游敏, 杨兴海, 郑勇, 等. 金属胶接接头拉剪破坏过程分析[J]. 化学与粘合, 1997(2): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ702.001.htm

    YOU Min, YANG Xing-hai, ZHENG Yong, et al. Analysis on the destruction procedure of the tensile shear specimen[J]. Chemistry and Adhesion, 1997(2): 66-68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ702.001.htm
    [12] 郑小玲, 娜日松, 游敏, 等. 胶瘤对单搭接胶接接头强度的影响[J]. 三峡大学学报(自然科学版), 2001, 23(6): 530-532. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200106012.htm

    ZHENG Xiao-ling, NA Ri-song, YOU Min, et al. Influence of fillet on strength of lap joints[J]. Journal of Three Gorges University (Natural Sciences), 2001, 23(6): 530-532. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200106012.htm
    [13] CZARNOCKI P, PIEKARSKI K. Fracture strength of an adhesive-bonded joint[J]. International Journal of Adhesion and Adhesives, 1986, 6(2): 93-96. doi: 10.1016/0143-7496(86)90055-2
    [14] YANG C, HUANG H, TOMBLIN J S, et al. Elastic-plastic model of adhesive-bonded single-lap composite joints[J]. Journal of Composite Materials, 2004, 38(4): 293-309. doi: 10.1177/0021998304039268
    [15] GUAN Zhi-dong, WU Ai-guo, WANG Jin. Study on ASTM shear-loaded adhesive lap joints[J]. Chinese Journal of Aeronautics, 2004, 17(2): 79-86. doi: 10.1016/S1000-9361(11)60218-5
    [16] 孙中雷, 张国凡. 复合材料胶接接头强度设计研究[J]. 计算机仿真, 2017(3): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201703011.htm

    SUN Zhong-lei, ZHANG Guo-fan. Research on strength design of composite adhesive joint[J]. Computer Simulation, 2017(3): 52-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201703011.htm
    [17] REIS P N B, ANTUNES F J V, FERREIRA J A M. Influence of superposition length on mechanical resistance of single-lap adhesive joints[J]. Composite Structures, 2005, 67: 125-133. doi: 10.1016/j.compstruct.2004.01.018
    [18] DUCEPT F, DAVIES P, GAMBY D. Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint[J]. International Journal of Adhesion and Adhesives, 2000, 20(3): 233-244. doi: 10.1016/S0143-7496(99)00048-2
    [19] QIN Guo-fen, FAN Yi-sa, NA Jing-xin, et al, Durability of aluminium alloy adhesive joints in cyclic hydrothermal condition for high-speed EMU applications[J]. International Journal of Adhesion and Adhesives, 2018, 84: 153-165. doi: 10.1016/j.ijadhadh.2018.03.011
    [20] DEHOFF P H, ANUSAVICE K J, WAN Zhi-xin. Three-dimensional finite element analysis of the shear bond test[J]. Dental Materials, 1995, 11(2): 126-130. doi: 10.1016/0109-5641(95)80047-6
    [21] KIM W S, LEE J J. Interfacial fracture analysis of adhesive-bonded joints[J]. Advanced Materials Research, 2008, 33-37: 327-332. doi: 10.4028/www.scientific.net/AMR.33-37.327
    [22] LEE K Y, KONG B S. Theoretical and experimental studies for the failure criterion of adhesively bonded joints[J]. Journal of Adhesion Science and Technology, 2000, 14(6): 817-832. doi: 10.1163/15685610051066730
    [23] KLUG J C, SUN C T. Large deflection effects of cracked aluminum plates repaired with bonded composite patches[J]. Composite Structures, 1998, 42: 291-296. doi: 10.1016/S0263-8223(98)00018-X
    [24] NABOULSI S, MALL S. Modeling of a cracked metallic structure with bonded composite patch using the three layer technique[J]. Composite Structures, 1996, 35(3): 295-308. doi: 10.1016/0263-8223(96)00043-8
    [25] 赵宁, 欧阳海彬, 戴建京, 等. 内聚力模型在结构胶接强度分析中的应用[J]. 现代制造工程, 2009(11): 128-149. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY200911032.htm

    ZHAO Ning, OUYANG Hai-bin, DAI Jian-jing, et al. The application of structure adhesive bonded strength using cohesive zone model[J]. Modern Manufacturing Engineering, 2009(11): 128-149. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY200911032.htm
    [26] 谭伟, 那景新, 慕文龙, 等. 服役温度对BFRP/铝合金粘接接头静态失效的影响[J]. 交通运输工程学报, 2020, 20(1): 171-180. doi: 10.19818/j.cnki.1671-1637.2020.01.014

    TAN Wei, NA Jing-xin, MU Wen-long, et al. Effect of service temperature on static failure of BFRP/aluminum alloy adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 171-180. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.01.014
    [27] 聂恒昌, 徐吉峰, 关志东, 等. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201710019.htm

    NIE Heng-chang, XU Ji-feng, GUAN Zhi-dong, et al. Tensile property and influence parameters of bonded repaired composite laminates[J]. Journal of Materials Engineering, 2017, 45(10): 124-131. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201710019.htm
    [28] 游敏, 郑小玲. 胶接接头剪切和正拉强度试验方法的分析[J]. 粘接, 1994, 15(3): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-NIAN403.007.htm

    YOU Min, ZHENG Xiao-ling. Analyses on the shear and tensile strength testing methods of adhesive joints[J]. Adhesion, 1994, 15(3): 29-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NIAN403.007.htm
    [29] KIM W S, LEE J J. Interfacial fracture analysis of adhesive-bonded joints[J]. Advanced Materials Research, 2008, 33-37: 327-332.
    [30] 范以撒. 温度湿度对车用聚氨酯粘接剂静态强度的影响研究[D]. 长春: 吉林大学, 2018.

    FAN Yi-sa. Research on the effect of temperature and humidity on static strength of automotive polyurethane adhesive[D]. Changchun: Jilin University, 2018. (in Chinese).
    [31] GROTH H L. A method to predict fracture in an adhesively bonded joint[J]. International Journal of Adhesion and Adhesives, 1985, 5(1): 19-22.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  786
  • HTML全文浏览量:  299
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-07
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回