High-speed train gearbox housing vibration test based on small roller high-frequency excitation
-
摘要: 为探究高速列车齿轮箱箱体振动特性和疲劳损伤, 应用小滚轮高频激励台架试验, 将滚轮表面加工成径跳量幅值为0.05 mm的13阶多边形, 可等效成20阶车轮多边形, 研究了某型齿轮箱箱体在不同垂向载荷与速度工况下的振动特性; 通过雨流计数法及Miner线性损伤法则, 分析了齿轮箱箱体单位时间应力累计损伤。研究结果表明: 受齿轮箱箱体共振影响, 不同垂向载荷与速度工况下, 高速列车运行速度为200 km·h-1时, 齿轮箱箱体各测点的垂、横向加速度均方根值均为最小; 当垂向载荷为23 t时, 大部分测点的垂、横向加速度均方根值均为最大; 齿轮箱箱体存在573 Hz的局部固有频率被激发共振, 其原因是试验速度为100 km·h-1时试验台发生共振, 以及试验速度为300 km·h-1时, 受到20阶多边形车轮转频约580 Hz的主频激扰; 车轮初始速度从0加速到200 km·h-1及从300 km·h-1减速至0的速度等级之间时, 齿轮箱箱体各测点的单位时间应力累计损伤波动较大, 其余速度等级段各测点的单位时间应力累计损伤波动很小; 单位时间应力损伤最大值出现在大齿轮箱齿面观察孔, 为3.72×10-10, 损伤最小值位于小齿轮箱轴承正上方, 仅为8.29×10-18。可见, 箱体共振、试验台减速运行、速度等级对齿轮箱箱体振动加速度影响较大; 非共振、试验台不减速运行、相同速度等级下, 垂向载荷对单位时间应力累计损伤影响甚微。Abstract: To analyze the vibration characteristics and fatigue damage of a high-speed train gearbox housing, a small roller high-frequency excitation test stand was applied to study the vibration characteristics of gearbox housing under different vertical loads and speeds. In the test, the surface of roller was processed to the 13 th-order polygon with a radial jump amplitude of 0.05 mm, which could be equaled to a 20 th-order actual wheel polygon. The stress accumulation damage of gearbox housing per unit time was analyzed by the rain flow counting method and Miner linear damage rule. Analysis result indicates that effected by the resonance of the gearbox housing, the root mean square(RMS) values of transverse and vertical accelerations of each measuring point of the gearbox housing are minimal under different vertical loads and speeds at a running speed of the high-speed train of 200 km·h-1. The RMS values of transverse and vertical accelerations of most measurement points are maximal when the vertical load is 23 t. The resonance of gearbox at the natural frequency of 573 Hz can be stimulated by the resonance frequency of test bench at a test speed of 100 km·h-1 and main excitation frequency of the 20 th-order wheel polygon frequency shift of approximately 580 Hz at a test speed of 300 km·h-1. The cumulative stress damage per unit time at each measuring point of gearbox housing largely fluctuates when the initial speed of wheel is between the speed grades of acceleration from 0 to 200 km·h-1 and deceleration from 300 to 0 km·h-1. The stress cumulative damage per unit time of each measuring point in the other speed grades has small fluctuations. The maximum value of stress damage per unit time is obtained in the tooth surface observation hole of a large gearbox housing, 3.72×10-10, while the minimum damage is located above the bearing of a small gearbox housing, only 8.29×10-18. Thus, the vibration acceleration of gearbox housing is largely affected by the resonance of gearbox and the deceleration operation and speed grades of test stand. However, the vertical load has a small influence on the stress cumulative damage per unit time under the conditions of non-resonance of gearbox housing, without deceleration operation, and the same speed grade of test stand.
-
表 1 传感器测量参数
Table 1. Measurement parameters of sensors
传感器类型 量程 采样频率/kHz 测试方向 测试对象 BK传感器 0~700g 5 垂、横向 齿轮箱箱体 应变片传感器 应变极限2% 5 纵向 齿轮箱箱体 表 2 滚轮试验工况
Table 2. Roller test condition
参数 滚轮阶数 车轮阶数 径跳量幅值/mm 作动器垂向载荷/t 轮对速度/(km·h-1) 数值 13 20 0.05 10、18、23 0~300 表 3 齿轮箱箱体模态试验频率
Table 3. Modal test frequencies of gearbox housing
阶次 1 2 3 4 5 6 7 8 频率/Hz 573 643 665 762 835 864 889 946 表 4 齿轮箱箱体测点位置应变片信息
Table 4. Strain gauge information for measuring point positions of gearbox housing
位置 材料 方向 采样频率/kHz 编号 通道号 应变片系数 大齿轮箱齿面观察孔 铝合金 纵向 5 ZFB10 Smstr6448 0.138 大齿轮箱轴承正上方 铸钢 纵向 5 ZFB20 Smstr6334 0.412 小齿轮箱轴承正上方 铝合金 纵向 5 ZFB12 Smstr6263 0.138 大齿轮箱油位观察孔 铝合金 纵向 5 ZFB09 Smstr6467 0.138 表 5 23 t载荷工况下各测点速度等级与测试时间
Table 5. Speed grades and test times of each measuring point under 23 t load condition
速度等级 速度/(km·h-1) 测试时间/s 1 0~100 0~133 2 100 133~200 3 100~200 200~263 4 200 263~328 5 200~250 328~361 6 250 361~436 7 250~300 436~468 8 300 468~541 9 300~0 541~700 表 6 23 t垂向载荷齿轮箱箱体测点应力累计损伤
Table 6. Stress accumulated damages of gearbox housing measuring points under 23 t vertical load
速度等级 大齿轮箱轴承正上方/10-10 大齿轮箱齿面观察孔/10-10 小齿轮箱轴承正上方/10-14 大齿轮箱油位观察孔/10-14 1 9.7 78.1 70.9 155.3 2 48.1 249.3 141.1 241.9 3 13.5 58.5 32.1 23.7 4 0.9 6.7 0.3 27.3 5 0.5 3.3 0.3 4.5 6 2.3 16.6 0.3 18.3 7 0.6 6.8 2.9 3.7 8 2.9 16.8 10.3 14.8 9 18.4 135.7 85.3 1 560.6 表 7 18 t垂向载荷齿轮箱箱体测点应力累计损伤
Table 7. Stress accumulated damages of gearbox housing measuring points under 18 t vertical load
速度等级 大齿轮箱轴承正上方/10-10 大齿轮箱齿面观察孔/10-10 小齿轮箱轴承正上方/10-14 大齿轮箱油位观察孔/10-14 1 51.8 128.9 201.7 49.1 2 1.5 5.4 0.2 0.9 3 4.8 12.6 1.1 1.2 4 3.7 12.7 1.3 0.9 5 2.3 9.2 4.8 1.1 6 2.4 10.3 3.1 1.2 7 1.4 5.5 0.4 0.8 8 14.3 45.8 121.6 4.4 9 17.4 63.8 123.9 6.4 表 8 10 t垂向载荷齿轮箱箱体测点应力累计损伤
Table 8. Stress accumulated damages of gearbox housing measuring points under 10 t vertical load
速度等级 大齿轮箱轴承正上方/10-10 大齿轮箱齿面观察孔/10-10 小齿轮箱轴承正上方/10-14 大齿轮箱油位观察孔/10-14 1 9.3 94.8 153.6 2 909.3 2 15.8 124.5 62.5 3.9 3 3.4 37.1 6.2 1.4 4 0.4 2.4 0.1 0.8 5 7.1 2.8 0.2 0.7 6 1.1 6.4 0.5 0.9 7 0.8 4.7 1.3 0.6 8 0.9 5.8 5.2 1.1 9 7.5 93.7 98.8 9.1 表 9 23 t垂向载荷齿轮箱箱体测点每秒应力累计损伤
Table 9. Stress accumulated damages per second of gearbox housing measuring points under 23 t vertical load
速度等级 大齿轮箱轴承正上方/10-12 大齿轮箱齿面观察孔/10-11 小齿轮箱轴承正上方/10-16 大齿轮箱油位观察孔/10-16 1 7.3 5.9 53.3 117.0 2 71.9 37.2 211.0 361.0 3 21.4 9.3 50.9 37.6 4 1.4 1.1 0.5 42.0 5 1.4 1.0 0.8 13.6 6 3.1 2.2 3.9 24.4 7 2.1 2.1 5.2 11.4 8 3.9 2.3 14.1 20.3 9 25.1 18.6 117.0 2 140.0 表 10 18 t垂向载荷齿轮箱箱体测点每秒应力累计损伤
Table 10. Stress accumulated damages per second of gearbox housing measuring points under 18 t vertical load
速度等级 大齿轮箱轴承正上方/10-12 大齿轮箱齿面观察孔/10-11 小齿轮箱轴承正上方/10-16 大齿轮箱油位观察孔/10-16 1 43.2 10.8 168.0 41.0 2 2.3 0.8 0.3 1.4 3 4.8 1.3 1.1 1.3 4 6.8 2.3 2.4 1.7 5 2.7 1.1 5.7 1.2 6 3.7 1.6 4.8 1.9 7 1.8 0.7 0.5 1.1 8 20.5 6.6 174.0 6.3 9 9.4 3.5 67.0 3.5 表 11 10 t垂向载荷齿轮箱箱体测点每秒应力累计损伤
Table 11. Stress accumulated damages per second of gearbox housing measuring points under 10 t vertical load
速度等级 大齿轮箱轴承正上方/10-12 大齿轮箱齿面观察孔/10-11 小齿轮箱轴承正上方/10-16 大齿轮箱油位观察孔/10-16 1 3.2 3.3 53.0 1 000.0 2 19.8 15.6 78.1 4.9 3 3.4 3.7 6.2 1.4 4 0.5 0.3 0.1 1.0 5 10.1 0.4 0.2 0.9 6 1.4 0.9 0.6 1.2 7 1.1 0.6 1.7 0.8 8 1.3 0.8 6.9 1.5 9 3.8 4.6 48.2 4.4 -
[1] 王文静, 惠晓龙, 马纪军. 高速列车设备舱支架疲劳裂纹机理研究[J]. 机械工程学报, 2015, 51(6): 142-147. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201506025.htmWANG Wen-jing, HUI Xiao-long, MA Ji-jun. Fatigue crack mechanism research on high speed train equipment cabin frame[J]. Journal of Mechanical Engineering, 2015, 51(6): 142-147. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201506025.htm [2] KAHRAMAN A, BLANKENSHIP G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64(1): 217-226. doi: 10.1115/1.2787276 [3] 朱才朝, 陈爽, 马飞, 等. 轮齿修形对兆瓦级风电齿轮箱动态特性影响[J]. 振动与冲击, 2013, 32(7): 123-128. doi: 10.3969/j.issn.1000-3835.2013.07.025ZHU Cai-chao, CHEN Shuang, MA Fei, et al. Effect of gear teeth modification on dynamic characteristics of a megawatt level wind turbine gearbox[J]. Journal of Vibration and Shock, 2013, 32(7): 123-128. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.07.025 [4] 林新海, 关云辉. 地铁车辆齿轮箱加速疲劳试验方法研究[J]. 轨道交通装备与技术, 2014(3): 20-21. doi: 10.3969/j.issn.2095-5251.2014.03.008LIN Xin-hai, GUAN Yun-hui. Research on accelerated fatigue test method of metro vehicle gearbox[J]. Rail Transportation Equipment and Technology, 2014(3): 20-21. (in Chinese). doi: 10.3969/j.issn.2095-5251.2014.03.008 [5] 王文静, 张莹, 曲俊生, 等. 高速列车齿轮箱箱体动应力响应及疲劳可靠性研究[J]. 中国铁道科学, 2018, 39(6): 90-97. doi: 10.3969/j.issn.1001-4632.2018.06.12WANG Wen-jing, ZHANG Ying, QU Jun-sheng, et al. Dynamic stress response and fatigue reliability of gearbox housing for G-series high-speed train[J]. China Railway Science, 2018, 39(6): 90-97. (in Chinese). doi: 10.3969/j.issn.1001-4632.2018.06.12 [6] 袁文东. 标准动车组齿轮箱箱体强度分析与寿命预测[D]. 北京: 北京交通大学, 2016.YUAN Wen-dong. Analysis on the strength and fatigue-life prediction of standard high-speed EMU gear box housing[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese). [7] 高天阳, 肖守讷, 朱涛, 等. 机车齿轮箱箱体疲劳失效原因分析[J]. 铁道机车车辆, 2018, 38(6): 17-23. doi: 10.3969/j.issn.1008-7842.2018.06.05GAO Tian-yang, XIAO Shou-ne, ZHU Tao, et al. Fatigue failure analysis of vehicle gearbox body for locomotive[J]. Railway Locomotive and Car, 2018, 38(6): 17-23. (in Chinese). doi: 10.3969/j.issn.1008-7842.2018.06.05 [8] 李广全, 刘志明, 呙如兵, 等. 高速列车齿轮箱应力响应与疲劳损伤评估[J]. 交通运输工程学报, 2018, 18(1): 79-88. doi: 10.3969/j.issn.1671-1637.2018.01.008LI Guang-quan, LIU Zhi-ming, GUO Ru-bing, et al. Stress response and fatigue damage assessment of high-speed train gearbox[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 79-88. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.008 [9] 王文静, 李广全, 韩俊臣, 等. 高速列车齿轮箱箱体动应力影响规律[J]. 交通运输工程学报, 2019, 19(1): 85-95. doi: 10.3969/j.issn.1671-1637.2019.01.009WANG Wen-jing, LI Guang-quan, HAN Jun-chen, et al. Influence rule of dynamic stress of high-speed train gearbox housing[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 85-95. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.009 [10] 黄冠华, 王兴宇, 梅桂明, 等. 内外激励下高速列车齿轮箱箱体动态响应分析[J]. 机械工程学报, 2015, 51(12): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201512016.htmHUANG Guan-hua, WANG Xing-yu, MEl Gui-ming, et al. Dynamic response analysis of gearbox housing system subjected to internal and external excitation in high-speed train[J]. Journal of Mechanical Engineering, 2015, 51(12): 95-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201512016.htm [11] 朱海燕, 尹必超, 胡华涛, 等. 谐波转矩对高速列车齿轮箱体与牵引电机振动特性的影响[J]. 交通运输工程学报, 2019, 19(6): 65-76. doi: 10.19818/j.cnki.1671-1637.2019.06.007ZHU Hai-yan, YIN Bi-chao, HU Hua-tao, et al. Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 65-76. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2019.06.007 [12] WILK A, FIGLUS T, MADEJ H. Analysis of the possibility to reduce vibraction of the gearbox housing[J]. Maintenance and Reliability, 2013, 2011(2): 42-49. [13] HUANG Guan-hua, ZHOU Ning, ZHANG Wei-hua. Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train[J]. Journal of Rail and Rapid Transit, 2016, 230(8): 1899-1907. doi: 10.1177/0954409715617787 [14] 赵春, 王广权, 施权浩, 等. 高速动车组齿轮箱异常振动试验分析[J]. 城市轨道交通研究, 2015, 18(8): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201508018.htmZHAO Chun, WANG Guang-quan, SHI Quan-hao, et al. Analysis of abnormal vibration test for the adjustment of EMU gearbox[J]. Urban Mass Transit, 2015, 18(8): 81-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201508018.htm [15] 李广全, 刘志明, 王文静, 等. 高速动车组齿轮箱疲劳裂纹机理分析研究[J]. 机械工程学报, 2017, 53(2): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201702013.htmLI Guang-quan, LIU Zhi-ming, WANG Wen-jing, et al. Fatigue crack mechanism study on high-speed EMU gearbox[J]. Journal of Mechanical Engineering, 2017, 53(2): 99-105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201702013.htm [16] NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels—a literature survey[J]. Journal of Rail and Rapid Transit, 2000, 214(2): 79-91. doi: 10.1243/0954409001531351 [17] NIELSEN J C O, LUNDER R, JOHANSSON A. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces[J]. Vehicle System Dynamics, 2003, 40(1/2/3): 3-54. [18] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. doi: 10.19818/j.cnki.1671-1637.2020.01.008ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.01.008 [19] JOHANSSON A, ANDERSSON C. Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559. doi: 10.1080/00423110500184649 [20] MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978. [21] CHEN Mei, SUN Yu, GUO Yu, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 432/433: 1-9. [22] 赵晓男, 陈光雄, 康熙, 等. 兰新客运专线动车组车轮多边形磨耗的机理[J]. 西南交通大学学报, 2020, 55(2): 364-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002017.htmZHAO Xiao-nan, CHEN Guang-xiong, KANG Xi, et al. Mechanism of polygonal wear on wheels of electric multiple units on Lanzhou-Xinjiang Passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002017.htm [23] ZHAO X N, CHEN G X, LU J Z, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426/427: 1820-1827. [24] 胡晓依, 侯银庆, 宋志坤, 等. 基于柔性轮轨模型的车轮谐波磨耗对高速轮轨系统振动影响的仿真研究[J]. 中国铁道科学, 2018, 39(6): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201806012.htmHU Xiao-yi, HOU Yin-qing, SONG Zhi-kun, et al. Simulation study on influence of harmonic wear of wheel on vibration of high-speed wheel-rail system based on flexible wheel-rail model[J]. China Railway Science, 2018, 39(6): 81-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201806012.htm [25] 宋志坤, 岳仁法, 胡晓依, 等. 车轮多边形对车辆振动及轮轨力的影响[J]. 北京交通大学学报, 2017, 41(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201706016.htmSONG Zhi-kun, YUE Ren-fa, HU Xiao-yi, et al. Influence of wheel polygon on vehicle vibration and wheel/rail force[J]. Journal of Beijing Jiaotong University, 2017, 41(6): 88-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201706016.htm [26] 吴越, 韩健, 刘佳, 等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报, 2018, 54(4): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htmWU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm [27] 崔潇, 姚建伟, 孙丽霞. 基于柔性旋转轮对的车轮多边形磨耗对轮轨力的影响分析[J]. 铁道建筑, 2019, 59(6): 140-145. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201906034.htmCUI Xiao, YAO Jian-wei, SUN Li-xia. Analysis on influence of wheel polygon wear on wheel-rail force based on flexible rotating wheelset[J]. Railway Engineering, 2019, 59(6): 140-145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201906034.htm [28] 刘欢, 陶功权, 蔡晶, 等. 车轮多边形态下机车轮轨动态响应研究[J]. 振动与冲击, 2020, 39(16): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htmLIU Huan, TAO Gong-quan, CAI Jing, et al. Influence of wheel polygon on locomotive wheel-rail dynamic response[J]. Journal of Vibration and Shock, 2020, 39(16): 16-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htm [29] 邹航宇, 张卫华, 王志伟. 车轮多边形化对高速列车齿轮箱体动态响应的影响[J]. 机车电传动, 2017(6): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201706014.htmZOU Hang-yu, ZHANG Wei-hua, WANG Zhi-wei. Influence of wheel polygonization on dynamic response of gearbox housing of high-speed train[J]. Electric Drive for Locomotives, 2017(6): 52-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201706014.htm [30] 杨广雪, 李广全, 刘志明, 等. 轮轨激励下高速列车齿轮箱箱体振动特性分析研究[J]. 铁道学报, 2017, 39(11): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201711006.htmYANG Guang-xue, LI Guang-quan, LIU Zhi-ming, et al. Vibration characteristics analysis of gearbox housing system of high-speed train subjected to wheel-rail excitation[J]. Journal of the China Railway Society, 2017, 39(11): 46-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201711006.htm [31] 常程城. 高速列车齿轮箱线路试验及振动传递关系研究[D]. 北京: 北京交通大学, 2015.CHANG Cheng-cheng. Research on transmission of vibration of high speed train gear box and gear box line test[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese). -