Vehicle scheduling model considering individual driving speed deviation
-
摘要: 考虑驾驶速度偏差, 建立了多驾驶人、多种车型、多种物资、多仓库点和多需求点的物资车辆调度模型, 分别以整体运输时间最短、整体运输成本最低以及综合整体运输时间与成本最小为目标, 研究了个体驾驶速度偏差对上述目标的影响; 将驾驶人参数加入到遗传算法的基因编码中, 建立了驾驶人唯一性约束、初始地点约束以及物资供需数量约束, 保证每个基因个体中驾驶人分配方案可行, 且物资运输不超供需总量; 采用遗传算法求解了随机分配驾驶人条件下有驾驶速度偏差与无驾驶速度偏差时各目标的车辆调度方案。计算结果表明: 优化调度方案满足模型中的所有约束条件; 3种目标下的最优方案中, 驾驶人的分配方案不同, 说明目标函数受驾驶人驾驶速度偏差影响; 有驾驶速度偏差情况下的各目标调度结果均优于相应无驾驶速度偏差的调度结果, 3种目标函数差比分别为3.50%、2.96%和1.13%, 说明驾驶速度偏差对求解质量有一定影响; 驾驶人随机分配时的各目标调度结果均劣于相应最优结果, 3种目标函数差比分别为3.91%、2.47%和1.98%, 说明驾驶速度偏差会影响调度效率, 优化驾驶人分配方案能降低整体运输时间与成本。由此可见, 根据特定的调度目标对驾驶人进行合理分配, 可以得到更符合调度目标、更贴近实际、更经济省时的车辆调度方案。Abstract: In view of driving speed deviation, a vehicle scheduling model was established for multi-drivers, multi-vehicles, multi-materials, multi-depots, and multi-demands targeting at the shortest overall transportation time, the lowest overall transportation cost and the least multi-objective overall transportation time and cost, respectively. The effects of individual driving speed deviation on the above targets were studied. The driver parameters were input into the gene coding of the genetic algorithm. The constraints of driver uniqueness, initial location, and the supply and demand quantities of materials were established to ensure that the distribution scheme of drivers in each gene was feasible and the material transportation did not exceed the total supply and demand. A genetic algorithm was applied to solve the vehicle scheduling schemes for each target with and without driving speed deviation under the condition of randomly assigned drivers. Calculation result shows that the optimized scheduling schemes satisfy all the constraints in the model. For the three optimal schemes, the driver assignments are different, indicating that the target function is affected by the driving speed deviation. The dispatching results of each target with driving speed deviation are superior to those without driving speed deviation. The difference ratios of the three objective functions are 3.5%, 2.96% and 1.13%, respectively, which shows that the driving speed deviation has a certain influence on the solving quality. The target scheduling results of the driver's random assignment are inferior to the corresponding optimal results. The different ratios of the three objective functions are 3.91%, 2.47% and 1.98%, respectively, showing that the dispatching efficiency is affected by the driving speed deviation, and optimizing the driver allocation scheme can reduce the overall transport time and cost. Analysis result shows that the vehicle scheduling scheme, which is more in line with the scheduling target, closer to reality, and more economical and time-saving, can be obtained by allocating drivers reasonably according to the specific dispatching target.
-
Key words:
- vehicle scheduling /
- scheduling scheme /
- genetic algorithm /
- driving speed deviation /
- driver assignment
-
表 1 相关变量与符号
Table 1. Related variables and symbols
变量/符号 说明 M 物资集合, m∈M D 仓库点集合, d∈D R 需求点集合, r∈R V 车辆集合, v∈V P 驾驶人集合, p∈P n 仓库点d中m类物资的存储量 n 需求点r对m类物资的需求量 l 仓库点d与需求点r之间的距离 d 驾驶人p的初始仓库点 dv 车辆v的初始仓库点 cv 车辆v的载货量 sv 车辆v的平均速度 hv 车辆v的满载运输成本 ev 车辆v的空载运输成本 Φ 所有车辆的路径调度方案集合 ϕv 车辆v的调度方案, ϕv⊆Φ Θ 所有车辆的驾驶人分配方案集合 θv 被分配给车辆v的驾驶人, θv∈P sθv 驾驶人θv的驾驶速度偏差, 为θv驾驶车辆v时车速与车辆v平均速度差异的百分比 t 车辆v完成调度方案ϕv的总时间 C 整体运输成本 表 2 各仓库点到各需求点的距离
Table 2. Distances from each depot to each demand place
距离/km d1 d2 d3 r1 505 1 014 939 r2 523 553 957 r3 447 250 610 r4 682 173 372 r5 838 823 463 r6 352 677 317 r7 377 886 711 表 3 各仓库点中各类物资储备量
Table 3. Amounts of various materials in each depot
储备量/t m1 m2 m3 d1 114 103 110 d2 102 94 78 d3 98 89 94 表 4 各需求点对各类物资的需求量
Table 4. Demands for all kinds of materials demand
需求量/t m1 m2 m3 r1 27 23 30 r2 25 26 28 r3 17 19 15 r4 35 37 33 r5 34 38 32 r6 18 23 17 r7 25 20 21 表 5 车辆参数
Table 5. Vehicle parameters
参数 cv/t sv/(km·h-1) hv /(元·km-1) ev /(元·km-1) v1-v5 3 65 0.8 0.8 v6-v10 5 62 1.0 1.0 v11-v15 8 60 1.2 1.2 表 6 驾驶人初始仓库点
Table 6. Starting depots of drivers
仓库点 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 d d1 d2 d2 d3 d3 d1 d1 d2 d3 d3 d1 d1 d2 d2 d3 表 7 以最大单辆车辆完成调度方案的总时间最短为目标的最优调度方案
Table 7. Optimal scheduling schemes for shortest completion time on largest single-vehicle
v ϕv θ t/h v1 (d1m1r3)→(d2m3r5)→(d1m3r2)→(d1m3r5)→(d3m2r4)→(d2m2r5) p1 102.01 v2 (d1m1r2)→(d1m1r5)→(d1m1r7)→(d1m1r4)→(d2m3r6)→(d3m2r5)→(d3m1r4)→(d2m2r4)→(d2m2r4) p7 109.84 v3 (d2m1r7)→(d3m3r6)→(d1m1r7)→(d3m2r7)→(d3m1r7) p2 92.29 v4 (d2m2r3)→(d3m3r4)→(d2m3r2)→(d3m1r1)→(d2m2r5)→(d3m3r6) p3 108.82 v5 (d3m2r6)→(d1m3r1)→(d2m1r2)→(d1m2r1)→(d2m2r4)→(d1m1r2) p5 103.52 v6 (d3m3r7)→(d3m1r5)→(d3m3r4)→(d3m3r2)→(d3m1r6)→(d3m2r7) p4 106.76 v7 (d1m3r4)→(d3m3r6)→(d3m1r3)→(d2m2r2)→(d1m3r5)→(d1m3r1)→(d1m3r7) p6 105.75 v8 (d2m3r5)→(d2m2r5)→(d1m1r5)→(d3m3r3)→(d2m3r3)→(d2m1r4)→(d3m1r3) p8 112.79 v9 (d3m3r7)→(d1m2r4)→(d3m2r5)→(d3m2r4)→(d3m2r5)→(d3m2r2) p10 90.05 v10 (d1m1r1)→(d2m1r2)→(d3m1r6)→(d3m3r3)→(d1m2r3)→(d1m2r7)→(d3m2r1) p12 104.77 v11 (d1m1r1)→(d1m3r6)→(d1m2r2)→(d2m2r4)→(d1m3r2)→(d2m2r4)→(d3m1r5)→(d1m2r5)→(d3m1r4) p11 112.54 v12 (d2m1r1)→(d1m1r7)→(d3m1r5)→(d2m3r2)→(d2m1r6)→(d3m3r1)→(d2m3r4) p14 111.45 v13 (d2m1r2)→(d1m1r4)→(d1m2r1)→(d1m3r7)→(d3m3r4)→(d3m3r5)→(d2m1r4) p13 92.18 v14 (d3m3r4)→(d2m2r2)→(d1m3r1)→(d1m2r3)→(d1m3r2)→(d2m1r5)→(d3m2r6)→(d2m1r3)→(d2m2r7) p15 112.92 v15 (d3m2r5)→(d1m2r1)→(d1m3r5)→(d3m1r7)→(d1m2r6)→(d2m2r6)→(d1m3r1) p9 109.64 C/元 80 904.40 max(t)/h 112.92 表 8 以整体运输时间最短为目标、以整体运输成本最低为目标及多目标下的最优驾驶人分配方案
Table 8. Optimal driver allocation schemes for least overall transportation time, least overall transportation cost and multi-objective
分配方案 θv1 θv2 θv3 θv4 θv5 θv6 θv7 θv8 θv9 θv10 θv11 θv12 θv13 θv14 θv15 Θ(1) p1 p7 p2 p3 p5 p4 p6 p8 p10 p12 p11 p13 p14 p15 p9 Θ(2) p1 p7 p3 p2 p5 p4 p12 p8 p10 p11 p6 p13 p14 p15 p9 Θ(3) p1 p6 p3 p2 p5 p4 p11 p13 p10 p7 p11 p8 p14 p15 p9 表 9 以整体运输时间最短为目标、以整体运输成本最低为目标及多目标下的最优调度结果
Table 9. Optimal scheduling results for least overall transportation time, least overall transportation costs and multi-objective
分配方案 目标函数值 max(t)/h C/元 Θ(1) 112.92 112.92 80 904.40 Θ(2) 77 465.40 115.21 77 465.40 Θ(3) 4 064.17 113.63 79 124.50 表 10 驾驶人随机分配方案
Table 10. Driver random allocation schemes
分配方案 θv1 θv2 θv3 θv4 θv5 θv6 θv7 θv8 θv9 θv10 θv11 θv12 θv13 θv14 θv15 θ p12 p11 p2 p8 p4 p9 p7 p13 p15 p1 p6 p3 p14 p10 p5 θ p11 p1 p13 p3 p15 p4 p12 p2 p9 p7 p6 p14 p8 p5 p10 θ p12 p7 p13 p8 p4 p9 p1 p14 p15 p11 p6 p2 p3 p10 p5 表 11 无驾驶速度偏差及驾驶人随机分配方案的以最大单辆车辆完成调度方案的总时间最短为目标的调度结果
Table 11. Scheduling results for no driving speed deviation and random driver allocation schemes with shortest completion time on largest single-vehicle
分配方案 max(t)/h C/元 时间差比/% 成本差比/% 无驾驶速度偏差 116.89 83 105.60 3.50 2.72 Θ(4) 118.27 84 440.20 4.73 4.37 Θ(5) 116.03 80 546.70 2.75 -0.44 Θ(6) 117.73 83 446.90 4.26 3.14 表 12 无驾驶速度偏差及驾驶人随机分配方案的以整体运输成本最低为目标的调度结果
Table 12. Scheduling results for no driving speed deviation and random driver allocation schemes with least overall transportation cost
分配方案 max(t)/h C/元 时间差比/% 成本差比/% 无驾驶速度偏差 124.75 79 760.40 8.83 2.96 Θ(4) 120.53 79 821.50 4.62 3.04 Θ(5) 120.71 78 560.50 4.77 1.41 Θ(6) 126.22 79 016.70 9.56 2.00 表 13 无驾驶速度偏差及驾驶人随机分配方案的多目标调度结果
Table 13. Scheduling results for no driving speed deviation and random driver allocation schemes with multi-objective
分配方案 目标函数值 max(t)/h C/元 目标函数值差比/% 无驾驶速度偏差 4 110.23 121.35 79 899.30 1.13 Θ(4) 4 153.93 119.25 80 812.80 2.21 Θ(5) 4 103.72 118.72 79 818.70 0.97 Θ(6) 4 176.64 120.43 81 244.60 2.77 -
[1] BRAEKERS K, RAMAEKERS K, VAN N I. The vehicle routing problem: state of the art classification and review[J]. Computers and Industrial Engineering, 2016, 99: 300-313. doi: 10.1016/j.cie.2015.12.007 [2] 王万良, 黄海鹏, 赵燕伟, 等. 基于车辆共享的软时间窗动态需求车辆路径问题[J]. 计算机集成制造系统, 2011, 17(5): 1056-1063. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201105020.htmWANG Wan-liang, HUANG Hai-peng, ZHAO Yan-wei, et al. Dynamic customer demand VRP with soft time windows based on vehicle sharing[J]. Computer Integrated Manufacturing Systems, 2011, 17(5): 1056-1063. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201105020.htm [3] BERGHIDA M, BOUKRA A. EBBO: an enhanced biogeography-based optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows[J]. International Journal of Advanced Maufacturing Technology, 2015, 77(9/10/11/12): 1711-1725. [4] ADELZADEH M, ASl V M, KOOSHA M. A mathematical model and a solving procedure for multi-depot vehicle routing problem with fuzzy time window and heterogeneous vehicle[J]. International Journal of Advanced Maufacturing Technology, 2014, 75(5/6/7/8): 793-802. [5] DA SILVA JÚNIOR O S, LEAL J E, REIMANN M. A multiple ant colony system with random variable neighborhood descent for the dynamic vehicle routing problem with time windows[J]. Soft Computing, 2020, DOI: 10.1007/s00500-020-05350-4. [6] MADANKUMAR S, RAJENDRAN C. A mixed integer linear programming model for the vehicle routing problem with simultaneous delivery and pickup by heterogeneous vehicles, and constrained by time windows[J]. Sadhana—Academy Proceedings in Engineering Sciences, 2019, 44(2): UNSP39-1-39. [7] LIU Ran, JIANG Zhi-bin. A constraint relaxation-based algorithm for the load-dependent vehicle routing problem with time windows[J]. Flexible Services and Manufacturing Journal, 2019, 31(2): 331-353. doi: 10.1007/s10696-018-9323-0 [8] KIRCI P. An optimization algorithm for a capacitated vehicle routing problem with time windows[J]. Sadhana—Academy Proceedings in Engineering Sciences, 2016, 41(5): 519-529. [9] WEN L, EGLESE R. Minimum cost VRP with time-dependent speed data and congestion charge[J]. Computers and Operations Research, 2015, 56: 41-50. doi: 10.1016/j.cor.2014.10.007 [10] 胡飞虎, 马贝龙, 杨丽, 等. 基于改进遗传算法的应急物资配送车辆调度优化问题研究[J]. 计算机应用研究, 2014, 31(10): 2928-2932. doi: 10.3969/j.issn.1001-3695.2014.10.010HU Fei-hu, MA Bei-long, YANG Li, et al. Research on vehicle scheduling optimization in emergency material distribution based on improved genetic algorithm[J]. Application Research of Computers, 2014, 31(10): 2928-2932. (in Chinese). doi: 10.3969/j.issn.1001-3695.2014.10.010 [11] 陈钢铁, 帅斌. 基于模糊网络和时间依赖的应急车辆调度优化研究[J]. 中国安全科学学报, 2011, 21(8): 171-176. doi: 10.3969/j.issn.1003-3033.2011.08.027CHEN Gang-tie, SHUAI Bin. Research on emergency vehicle scheduling optimization based on fuzzy network and time dependence[J]. China Safety Science Journal, 2011, 21(8): 171-176. (in Chinese). doi: 10.3969/j.issn.1003-3033.2011.08.027 [12] SRINIVAS S S, GAJANAND M S. Vehicle routing problem and driver behaviour: a review and framework for analysis[J]. Transport Reviews, 2017, 37(5): 590-611. doi: 10.1080/01441647.2016.1273276 [13] SCHNEIDER M. The vehicle-routing problem with time windows and driver-specific times[J]. European Journal of Operational Research, 2016, 250(1): 101-119. doi: 10.1016/j.ejor.2015.09.015 [14] LIGHTNERLAWS C, AGRAWAL V, LIGHTNER C, et al. An evolutionary algorithm approach for the constrained multi-depot vehicle routing problem[J]. International Journal of Intelligent Computing and Cybernetics, 2016, 9(1): 2-22. doi: 10.1108/IJICC-06-2015-0018 [15] AGRAWAL V, LIGHTNER C, LIGHTNERLAWS C, et al. A bi-criteria evolutionary algorithm for a constrained multi-depot vehicle routing problem[J]. Soft Computing, 2017, 21(17): 5159-5178. doi: 10.1007/s00500-016-2112-3 [16] MANCINI S. The hybrid vehicle routing problem[J]. Transportation Research Part C: Emerging Technologies, 2017, 78: 1-12. doi: 10.1016/j.trc.2017.02.004 [17] KOULAEIAN M, SEIDGAR H, KIANI M, et al. A multi-depot simultaneous pickup and delivery problem with balanced allocation of routes to drivers[J]. International Journal of Industrial Engineering: Theory Applications and Practice, 2015, 22(2): 223-242. [18] DREXL M, RIECK J, SIGL T, et al. Simultaneous vehicle and crew routing and scheduling for partial- and full-load long-distance road transport[J]. Business Research, 2013, 6(2): 242-264. doi: 10.1007/BF03342751 [19] KOK A L, MEYER C M, KOPFER H, et al. A dynamic programming heuristic for the vehicle routing problem with time windows and European Community social legislation[J]. Transportation Science, 2010, 44(4): 442-454. doi: 10.1287/trsc.1100.0331 [20] YOUSEFIKHOSHBAKHT M, DIDEHVAR F, RAHMATI F. An effective rank based ant system algorithm for solving the balanced vehicle routing problem[J]. International Journal of Industrial Engineering—Theory Application and Practice, 2016, 23(1): 13-25. [21] 杨群, 赵亚男, 张国伍, 等. 基于模糊规则的货运车调度方法[J]. 系统工程理论与实践, 2002(5): 125-127. doi: 10.3321/j.issn:1000-6788.2002.05.023YANG Qun, ZHAO Ya-nan, ZHANG Guo-Wu, et al. Freight car scheduling method based on fuzzy rules[J]. System Engineering Theory and Practice, 2002(5): 125-127. (in Chinese). doi: 10.3321/j.issn:1000-6788.2002.05.023 [22] GEE S B, AROKIASAMI W A, JIANG J, et al. Decomposition-based multi-objective evolutionary algorithm for vehicle routing problem with stochastic demands[J]. Soft Computing, 2016, 20(9): 3443-3453. doi: 10.1007/s00500-015-1830-2 [23] 曹剑东. 模糊条件下市区集送货的计算机辅助调度[D]. 北京: 清华大学, 2008.CAO Jian-dong. Computer aided dispatch for city pickup and delivery under fuzzy condition[D]. Beijing: Tsinghua University, 2008. (in Chinese). [24] 许茂增, 余国印, 周翔, 等. 综合成本最小的低碳车辆调度问题及算法[J]. 计算机集成制造系统, 2015, 21(7): 1906-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201507028.htmXU Mao-zeng, YU Guo-yin, ZHOU Xiang, et al. Low-carbon vehicle scheduling problem and algorithm with minimum-comprehendsive-cost[J]. Computer Integrated Manufacturing System, 2015, 21(7): 1906-1914. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJJ201507028.htm [25] GOEL A. The minimum duration truck driver scheduling problem[J]. EURO Journal on Transportation and Logistics, 2012, 1(4): 285-306. doi: 10.1007/s13676-012-0014-9 [26] TAVAKKOLI-MOGHADDAM R, ALINAGHIAN M, SALAMAT-BAKHSH A, et al. A hybrid meta-heuristic algorithm for the vehicle routing problem with stochastic travel times considering the driver's satisfaction[J]. Journal of Industrial Engineering International, 2012, 8(4): 1-6. [27] GHASEMI NOUGHAB M, SADEGHI A, MOHAMMADZADEH MOGHADDAM A, et al. Fatigue risk management: assessing and ranking the factors affecting the degree of fatigue and sleepiness of heavy-vehicle drivers using TOPSIS and statistical analyses[J]. Iranian Journal of Science and Technology—Transactions of Civil Engineering, 2020, 44(4): 1345-1357. doi: 10.1007/s40996-019-00320-9 [28] 徐福博. 基于IC卡数据的公交运行速度差异分析[J]. 汽车实用技术, 2018(16): 94-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC201816034.htmXU Fu-bo. Analysis of bus speed difference based on IC card data[J]. Automobile Applied Technology, 2018(16): 94-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC201816034.htm [29] 李长城, 刘小明, 荣建, 等. 不同能见度条件下高速公路车辆速度特性研究[J]. 交通运输系统工程与信息, 2014, 14(6): 213-218. doi: 10.3969/j.issn.1009-6744.2014.06.035LI Chang-cheng, LIU Xiao-ming, RONG Jian, et al. Characteristics of vehicle speed for expressway under different visibility condition[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 213-218. (in Chinese). doi: 10.3969/j.issn.1009-6744.2014.06.035 [30] AKIN D, SISIOPKU V P, SKABARDONIS A. Impacts of weather on traffic flow characteristics of urban freeways in Istanbul[C]∥Elsevier. 6th International Symposium on Highway Capacity and Quality of Service. Amsterdam: Elsevier, 2011: 89-99. [31] 陈皓, 张磊. 基于大数据的出租车与普通小汽车行驶速度差异研究[J]. 公路, 2017(2): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201702029.htmCHEN Hao, ZHANG Lei. Research on the difference of taxi and car speed based on big data[J]. Highway, 2017(2): 147-152. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201702029.htm [32] 谢涛, 陈火旺, 康立山. 多目标优化的演化算法[J]. 计算机学报, 2003, 23(8): 997-1003. doi: 10.3321/j.issn:0254-4164.2003.08.015XIE Tao, CHEN Huo-wang, KANG Li-shan. Evolutionary algorithms of multi-objective optimization problems[J]. Chinese Journal of Computers, 2003, 23(8): 997-1003. (in Chinese). doi: 10.3321/j.issn:0254-4164.2003.08.015 [33] 张栋亭. 多目标优化与模糊决策在混流装配排序中的应用[D]. 武汉: 华中科技大学, 2008.ZHANG Dong-ting. Application of multi-objective optimization and fuzzy decision-making for mixed-model assembly sequencing[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese). [34] 《中国公路学报》编辑部. 中国交通工程学术研究综述: 2016[J]. 中国公路学报, 2016, 29(6): 1-161. doi: 10.3969/j.issn.1001-7372.2016.06.001Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress: 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.06.001 [35] TREIBER M, HELBING D. Macroscopic simulation of widely scattered synchronized traffic states[J]. Journal of Physics A—Mathematical and General, 1999, 32(1): 17-23. doi: 10.1088/0305-4470/32/1/003 -