Design and validation of test model for structural vibration of overpass with track box girder
-
摘要: 基于π定理和量纲分析法,推导了某32 m高架轨道箱梁结构缩尺模型与原型物理量之间的相似关系,并通过建立动力仿真模型进行计算,验证了相似关系的准确性;以该相似关系指导设计,并通过合理选材,制作了几何相似比为10∶1的轨道箱梁结构缩尺试验模型;通过激振试验获取了缩尺试验模型的模态频率、振型和加速度响应,并与有限元仿真结果对比,验证了缩尺试验模型的有效性;在此基础上利用该缩尺试验模型研究了轨道箱梁结构的振动传递特性。研究结果表明:高架轨道箱梁缩尺模型与原型结构前10阶模态频率误差均小于1%,且由缩尺模型计算结果反演的加速度响应曲线与原型结果趋势一致,模型与原型之间相似关系推导正确;缩尺试验模型实测模态频率与有限元仿真结果的误差均在8.8%以内,各阶模态振型吻合,且实测加速度响应随时间变化趋势与有限元仿真结果一致,制作的高架轨道箱梁结构缩尺试验模型有效;当振动在轨道结构中传递时,扣件和橡胶层对1 000 Hz以上的高频振动具有明显的衰减作用;当振动由箱梁顶板向底板传递时,顶板加速度导纳最大,翼板次之,其次是腹板,底板加速度导纳最小;设计制作的高架轨道箱梁结构缩尺试验模型能够反映原型振动响应的一般传递规律,可用于轨道箱梁结构振动传递特性与控制关键技术研究。Abstract: Based on the π theory and the dimensional analysis method, the similarity relationship of physical quantities between the scale model and the prototype of a 32 m overpass with track box girder structure were deduced. The accuracy of similarity relationship was verified via the dynamic simulation. By considering the similarity relationship as design guides and selecting materials rationally, a scale test model of track box girder structure with a geometric similarity ratio of 10∶1 was constructed. The modal frequencies, vibration modes, and acceleration responses of the scale test model were obtained via the excitation test, and the results were compared with the finite element simulation results to validate the scale test model. Using the model, the vibration transmission characteristics of track box girder structure were studied. Research results demonstrate that the deviations of the first 10 order modal frequencies between the scale model of overpass with track box girder and the prototype structure are less than 1%. The acceleration response curve obtained for the scale model is consistent with that obtained for the prototype. The deduced similarity relationship between the scale model and the prototype is accurate. The errors between the measured modal frequencies of the scale test model and the finite element simulation results are less than 8.8%. In addition, the vibration modes are consistent for all orders, and the measured acceleration response variations with respect to time are consistent with the finite element simulation results. Hence, the constructed scale test model of overpass with track box girder structure is reliable. When the vibration transmits in the track structure, the fasteners and rubber layer have evident attenuation effects for high-frequency vibrations (at frequencies above 1 000 Hz). When the vibration transmits from the top plate to the bottom plate of box girder, the top plate acceleration admittance is the largest, followed by that of the wing plate and then that of the web. The bottom plate acceleration admittance is the smallest. The scale test model of overpass with track box girder structure can reflect the general transmission law of vibration responses of prototype. Therefore, the model can be used to study the vibration transmission characteristics and control technology of track box girder structures. 6 tabs, 20 figs, 31 refs.
-
Key words:
- bridge engineering /
- similar model /
- track box girder structure /
- excitation test /
- modal /
- acceleration
-
表 1 模型试验相似关系
Table 1. Similarity relationships of model test
物理参数 相似关系 备注 箱梁弹性模量E1 CE1 基本量 几何尺寸L CL 基本量 箱梁密度ρ1 Cρ1 基本量 泊松比μ Cμ=1 导出量 底座板弹性模量E2、轨道板弹性模量E3、钢轨弹性模量E4 CE2=CE3=CE4=CE1 导出量 响应位移δ Cδ=CL 导出量 底座板密度ρ2、轨道板密度ρ3、钢轨密度ρ4 Cρ2=Cρ3=Cρ4=Cρ1 导出量 截面惯性矩I CI=C4L 导出量 荷载F CF=CE1C2L 导出量 质量m Cm=Cρ1C3L 导出量 刚度k Ck=CE1CL 导出量 阻尼c Cc=C2LC1/2E1C1/2ρ1 导出量 时间T CT=(Cρ1/CE1)1/2CL 导出量 频率f Cf=CL-1(CE1/Cρ1)1/2 导出量 响应速度v Cv=(CE1/Cρ1)1/2 导出量 响应加速度a Ca=CE1/(Cρ1CL) 导出量 重力加速度g 忽略 导出量 表 2 原型与模型材料参数
Table 2. Material parameters of prototype and model
构件 物理量 原型 模型 钢轨 密度/(kg·m-3) 7 800 9 750 弹性模量/GPa 210 140 泊松比 0.3 0.3 轨道板 密度/(kg·m-3) 2 500 3 125 弹性模量/GPa 36.2 24.1 泊松比 0.2 0.2 底座板 密度/(kg·m-3) 2 400 3 000 弹性模量/GPa 34 22.7 泊松比 0.15 0.15 箱梁 密度/(kg·m-3) 2 500 3 125 弹性模量/GPa 36.2 24.1 泊松比 0.2 0.2 扣件 竖向刚度/(MN·m-1) 60 4 竖向阻尼/(kN·s·m-1) 10 0.09 CA砂浆 竖向刚度/(MN·m-1) 1200 80 竖向阻尼/(kN·s·m-1) 83 0.76 支座 竖向刚度/(MN·m-1) 3 380 225.3 竖向阻尼/(kN·s·m-1) 100 0.91 表 3 模态频率对比
Table 3. Modal frequency comparison
阶次 1 2 3 4 5 6 7 8 9 10 缩尺模型/Hz 38.206 44.707 69.435 81.237 87.356 87.356 87.356 87.356 96.513 111.130 缩尺反演/Hz 5.230 6.120 9.506 11.121 11.959 11.959 11.959 11.959 13.213 15.214 原型/Hz 5.231 6.122 9.507 11.124 12.019 12.019 12.019 12.019 13.215 15.217 误差/% 0.019 0.033 0.011 0.027 0.500 0.500 0.500 0.500 0.015 0.020 表 4 模型试验相似常数
Table 4. Similarity constants of model test
序号 物理参数 相似常数 1 E1 1.206 7 2 L 10 3 ρ1 1.134 5 4 μ 1 5 E2、E3、E4 1.206 7 6 δ 10 7 ρ2、ρ3、ρ4 1.134 5 8 I 10 000 9 F 120.67 10 m 1 134.5 11 k 12.067 12 c 117.004 3 13 T 9.696 1 14 f 0.103 0 15 v 1.031 3 16 a 0.106 4 表 5 模型主要结构参数相似结果
Table 5. Similarity results of main structural parameters of model
试验值 E2/GPa E3/GPa E4/GPa ρ2/(kg·m-3) ρ3/(kg·m-3) ρ4/(kg·m-3) 原型值 34 36 210 2 400 2 500 7 800 目标值 28.20 29.80 174.03 2 115.50 2 203.60 6 875.30 模型值 32.7 28.8 174.0 2 149.0 2 253.0 6 870.0 偏差/% 16.00 3.40 0.02 1.60 2.20 0.08 表 6 箱梁自由模态频率
Table 6. Free-modal frequencies of box girder
阶次 仿真模态频率/Hz 实测模态频率/Hz 相对误差/% 1 124.441 125.662 0.98 2 164.845 150.340 8.80 3 232.183 231.151 0.44 4 233.226 5 253.072 249.441 1.43 -
[1] FITZGERALD B.M. The development and implementation of noise control measures on an urban railway[J]. Journal of Sound and Vibration, 1996, 193(1): 377-385. doi: 10.1006/jsvi.1996.0278 [2] ZHANG Xun, LI Xiao-zhen, SONG Li-zhong, et al. Vibrational and acoustical performance of concrete box-section bridges subjected to train wheel-rail excitation: field test and numerical analysis[J]. Noise Control Engineering Journal, 2016, 64(2): 217-229. doi: 10.3397/1/376373 [3] 张天琦, 罗雁云, 周力. 腹板开孔对轨道交通箱梁振动噪声的影响[J]. 交通运输工程学报, 2019, 19(4): 35-46. doi: 10.3969/j.issn.1671-1637.2019.04.004ZHANG Tian-qi, LUO Yan-yun, ZHOU Li. Effect of web hole on vibration and noise of rail transit box girder[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 35-46. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.004 [4] WAYE K P. Effects of low frequency noise and vibrations: environmental and occupational perspectives[M]//NRIAGU J. Encyclopedia of Environmental Health. Amsterdam: Elsevier, 2011: 240-253. [5] WAYE K P, RYLANDER R. The prevalence of annoyance and effects after long-term exposure to low-frequency noise[J]. Journal of Sound and Vibration, 2001, 240(3): 483-497. doi: 10.1006/jsvi.2000.3251 [6] 李小珍, 杨得旺, 郑净, 等. 轨道交通桥梁减振降噪研究进展[J]. 中国公路学报, 2018, 31(7): 55-75, 136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201807005.htmLI Xiao-zhen, YANG De-wang, ZHENG Jing, et al. Review on vibration and noise reduction of rail transit bridges[J]. China Journal of Highway and Transport, 2018, 31(7): 55-75, 136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201807005.htm [7] CHU K H, GARG V K, BHATTI M H. Impact in truss bridge due to freight trains[J]. Journal of Engineering Mechanics, 1985, 111(2): 159-174. doi: 10.1061/(ASCE)0733-9399(1985)111:2(159) [8] 翟婉明, 蔡成标, 王开云. 高速列车-轨道-桥梁动态相互作用原理及模型[J]. 土木工程学报, 2005, 38(11): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200511024.htmZHAI Wan-ming, CAI Cheng-biao, WANG Kai-yun. Mechanism and model of high-speed train-track-bridge dynamic interaction[J]. China Civil Engineering Journal, 2005, 38(11): 132-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200511024.htm [9] 雷晓燕, 汪振国, 罗锟. 城市轨道交通简支箱梁桥结构振动特性分析[J]. 铁道工程学报, 2017(9): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201709017.htmLEI Xiao-yan, WANG Zhen-guo, LUO Kun. Analysis of structural vibration characteristics of simply supported box girder bridge in urban rail transit[J]. Journal of Railway Engineering Society, 2017(9): 96-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201709017.htm [10] 李小珍, 张迅, 刘全民, 等. 高速铁路桥梁结构噪声的全频段预测研究(Ⅰ): 理论模型[J]. 铁道学报, 2013, 35(1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201301023.htmLI Xiao-zhen, ZHANG Xun, LIU Quan-min, et al. Prediction of structure-borne noise of high-speed railway bridges in whole frequency bands (part Ⅰ): theoretical model[J]. Journal of the China Railway Society, 2013, 35(1): 101-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201301023.htm [11] 夏禾, 陈英俊. 车-梁-墩体系动力相互作用分析[J]. 土木工程学报, 1992, 25(2): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199202001.htmXIA He, CHEN Ying-jun. Analysis of the lateral dynamic interaction in vehicle-girder-pier system[J]. China Civil Engineering Journal, 1992, 25(2): 3-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199202001.htm [12] LEE J H, LEE J J, CHOI J S, et al. A semi-analytical approach to predict ground vibration by identification of soil properties and train-transit loads[J]. Advances in Structural Engineering, 2012, 15(6): 1013-1029. [13] NGAI K W, NG C F. Structure-borne noise and vibration of concrete box structure and rail viaduct[J]. Journal of Sound and Vibration, 2002, 255(2): 281-297. [14] 李小珍, 宋立忠, 张迅. 基于现场锤击试验的高铁简支箱梁振动传递特性研究[J]. 土木工程学报, 2016, 49(5): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201605012.htmLI Xiao-zhen, SONG Li-zhong, ZHANG Xun. Study on vibration transmission characteristics of high-speed railway simply-supported box-girders based on in-situ hammer excitation test[J]. China Civil Engineering Journal, 2016, 49(5): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201605012.htm [15] 宋立忠, 李小珍, 高慰, 等. 城市轨道交通箱梁中高频振动导纳特性试验研究[J]. 噪声与振动控制, 2018, 38(增1): 477-482. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S2026.htmSONG Li-zhong, LI Xiao-zhen, GAO Wei, et al. Study on mid- and high- frequency mobility characteristics of urban rail transit box-girders[J]. Noise and Vibration Control, 2018, 38(S1): 477-482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S2026.htm [16] LI Q, XU Y L, WU D J. Concrete bridge-borne low- frequency noise simulation based on train-track-bridge dynamic interaction[J]. Journal of Sound and Vibration, 2012, 331(10): 2457-2470. http://www.sciencedirect.com/science/article/pii/S0022460X11009783 [17] 常亮. 箱形梁结构的振动和噪声辐射研究[D]. 武汉: 武汉理工大学, 2007.CHANG Liang. The research on vibration and noise radiation of box beam[D]. Wuhan: Wuhan University of Technology, 2007. (in Chinese) [18] 姚亚东, 杨永清, 刘振标, 等. 大跨度铁路钢箱梁混合斜拉桥钢混结合段模型试验研究[J]. 铁道学报, 2015, 37(3): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201503015.htmYAO Ya-dong, YANG Yong-qing, LIU Zhen-biao, et al. Model tests on the steel-concrete joint section of hybrid cable-stayed railway bridge with long-span steel box girder[J]. Journal of the China Railway Society, 2015, 37(3): 79-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201503015.htm [19] 冯忠居, 陈慧芸, 袁枫斌, 等. 桩-土-断层耦合作用下桥梁桩基竖向承载特性[J]. 交通运输工程学报, 2019, 19(2): 36-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201902007.htmFENG Zhong-ju, CHEN Hui-yun, YUAN Feng-bin, et al. Vertical bearing characteristics of bridge pile foundation under pile-soil-fault coupling action[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 36-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201902007.htm [20] CHAN T H T, ASHEBO D B. Moving axle load from multi-span continuous bridge: laboratory study[J]. Journal of Vibration and Acoustics, 2006, 128(4): 521-526. [21] 汪振国, 雷晓燕, 罗锟, 等. 桥梁结构振动试验相似模型的设计及校验[J]. 振动与冲击, 2018, 37(7): 220-226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201807034.htmWANG Zhen-guo, LEI Xiao-yan, LUO Kun, et al. Design and validation of similarity model in bridge structural vibration tests[J]. Journal of Vibration and Shock, 2018, 37(7): 220-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201807034.htm [22] 罗锟, 汪振国, 雷晓燕, 等. 基于相似模型试验的简支箱梁振动传递特性研究[J]. 铁道学报, 2019, 41(5): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905020.htmLUO Kun, WANG Zhen-guo, LEI Xiao-yan, et al. Study on vibration transmission characteristics of simply-supported box-girders based on similarity model test[J]. Journal of the China Railway Society, 2019, 41(5): 142-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905020.htm [23] 罗忠, 朱云鹏, 韩清凯, 等. 动力学相似理论及在结构振动分析中的应用研究评述与展望[J]. 机械工程学报, 2016, 52(23): 114-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201623013.htmLUO Zhong, ZHU Yun-peng, HAN Qing-kai, et al. Review and prospect for dynamic similitude theory and its applications in the structure vibration[J]. Journal of Mechanical Engineering, 2016, 52(23): 114-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201623013.htm [24] 陈喆, 陈国平. 相似理论和模型试验的结构动响应分析运用[J]. 振动、测试与诊断, 2014, 34(6): 995-1000, 1164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201406002.htmCHEN Zhe, CHEN Guo-ping. Research of dynamics response based on similarity theory and model test[J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34(6): 995-1000, 1164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201406002.htm [25] 黄大维, 周顺华, 冯青松, 等. 盾构隧道与地层相互作用的模型试验设计[J]. 铁道学报, 2018, 40(6): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201806018.htmHUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, et al. Scaled model test design for interaction between shield tunnel and stratum[J]. Journal of the China Railway Society, 2018, 40(6): 127-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201806018.htm [26] HUANG Hong-wei, ZHANG Dong-ming. Resilience analysis of shield tunnel lining under extreme surcharge: characterization and field application[J]. Tunneling and Underground Space Technology, 2016, 51: 301-312. http://www.sciencedirect.com/science/article/pii/S0886779815302455 [27] 钱德玲, 李元鹏, 刘杰. 高层建筑结构振动台模型试验与原型对比的研究[J]. 振动工程学报, 2013, 26(03): 436-442. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201303019.htmQIAN De-ling, LI Yuan-peng, LIU Jie. Contrast study of shaking table model test with prototype for high-rise building structures[J]. Journal of Vibration Engineering, 2013, 26(3): 436-442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201303019.htm [28] 欧忠辉, 吴正, 陶明德. 量纲分析理论在交通流分析中的应用[J]. 交通运输工程学报, 2005, 5(1): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC20050100I.htmOU Zhong-hui, WU Zheng, TAO Ming-de. Dimension analysis theory in traffic flow analysis[J]. Journal of Traffic and Transportation Engineering, 2005, 5(1): 78-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC20050100I.htm [29] 张晓林. 城市铁路桥梁支座选型和八通线桥梁支座特点[J]. 铁道建筑, 2003(11): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200311006.htmZHANG Xiao-lin. Type selection of urban railway bridge supports and characteristics of supports on Batong Line[J]. Railway Engineering, 2003(11): 20-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200311006.htm [30] 张志俊, 李小珍, 张迅, 等. 弹性支座对桥梁车致振动的隔振效果研究[J]. 工程力学, 2015, 32(4): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201504015.htmZHANG Zhi-jun, LI Xiao-zhen, ZHANG Xun, et al. Study on the vibration-isolation effect of elastic bearings on train-induced vibration of railway bridge[J]. Engineering Mechanics, 2015, 32(4): 103-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201504015.htm [31] 罗锟, 汪振国, 雷晓燕, 等. 弹性支座对简支箱梁桥振动特性的影响及隔振效果研究[J]. 振动与冲击, 2019, 38(6): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906008.htmLUO Kun, WANG Zhen-guo, LEI Xiao-yan, et al. Influence of elastic support on the vibration characteristics of a simply-supported box-girder bridge and study on its vibration isolation effect[J]. Journal of Vibration and Shock, 2019, 38(6): 59-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906008.htm -