Structure-borne noise characteristics of fully-enclosed sound barriers on high-speed railway bridges
-
摘要: 开展了高速铁路桥梁和桥梁-全封闭声屏障典型结构断面的振动和噪声测试,建立了高速铁路桥梁-全封闭声屏障系统结构噪声的快速多极边界元法(FMBEM)数值预测模型,深入分析了板件的车致振动与结构噪声辐射的相关性和时频特性,并以此验证了FMBEM数值预测模型求解结构噪声的准确性;对比分析了有、无全封闭声屏障工况下32 m简支箱形梁桥结构噪声的空间和频域分布特性,并比较了FEBEM与边界元法(BEM)的计算效率。分析结果表明:桥梁-全封闭声屏障系统板件的振动与噪声的频谱分布规律基本一致;受全封闭声屏障隔声作用和梁体遮蔽作用的影响,距箱梁底板表面0.3 m处测得的噪声信号基本反映了底板的结构噪声特性,其余测点则不同程度地受到其他板件或轮轨系统辐射噪声的影响;计算与实测噪声的幅频特性吻合较好,峰值处计算误差在1.5 dB以内;全封闭声屏障的安装导致桥梁板件的振动和结构噪声均减小,也改变了桥梁周围的声场分布特性,桥梁板件表面场点的总声压级降低了0.8 dB,梁体下方地面场点总声压级增大了4.1~9.4 dB;梁体斜上方场点总声压级增大了9.6~18.1 dB,桥梁-全封闭声屏障结构顶部局部区域的结构噪声比无声屏障的桥梁大12.4 dB以上;FMBEM计算耗时为传统BEM的1/3,计算更为高效。Abstract: A test was conducted on the vibration and noise of typical structural cross-sections of high-speed railway bridges and bridge-fully-enclosed sound barriers. A numerical model was established based on the fast multipole boundary element method (FMBEM) for predicting the structure-borne noise of an high-speed railway bridge-fully-enclosed sound barrier system. The time-frequency characteristics of train-induced vibration and the structure-borne noise radiation of component plates and their correlations were analyzed in detail, and the accuracy of FMBEM numerical prediction model for calculating the structure-borne noise was verified. The spatial and frequency domain distribution characteristics of structure-borne noise of a 32 m simply supported box girder bridge with and without fully-enclosed sound barriers were compared and analyzed, and the calculation efficiencies of FMBEM and boundary element method (BEM) were compared. Analysis results indicate that the spectral distribution of component plate vibrations of the bridge-fully-enclosed sound barrier system is consistent with that of the structure-borne noise. Influenced by the sound insulation effect of fully-enclosed sound barriers and the shielding effect of girders, the noise signals measured at 0.3 m from the bottom plate of the box girder reflect the structure-borne noise characteristics of bottom plate. Additionally, other measurement points are influenced to varying degrees by the noise radiated from other component plates or the wheel-rail system. The amplitude-frequency characteristics of the simulated and measured noise are consistent with each other, and the simulation error of peak value is within 1.5 dB. The installation of fully-enclosed sound barriers reduces the vibration and structure-borne noise of bridge plates, and alters the distribution characteristics of sound field around the bridge. The overall sound pressure level of field points on the bridge plate surfaces decreases by 0.8 dB, whereas those under the girder and diagonally above the girder increase by 4.1-9.4 dB and 9.6-18.1 dB, respectively. The structure-borne noise at certain points above the bridge-fully-enclosed sound barrier system is approximately 12.4 dB greater than that of the bridge without sound barriers. Furthermore, the calculation time of FMBEM is 1/3 that of the traditional BEM, indicating the improved efficiency of FMBEM. 3 tabs, 16 figs, 30 refs.
-
表 1 现场测试断面和工况
Table 1. Field test sections and conditions
断面 位置 工况 车速/(km·h-1) 测试内容 Ⅰ 桥梁-全封闭声屏障断面 Test 1 76、81、82 内部噪声、板件振动、板件噪声、地面和轨上噪声 Test 2 Test 3 Ⅱ 无声屏障断面 Test 4 60、66、59 板件振动、板件表面噪声、地面和轨上噪声 Test 5 Test 6 表 2 主要材料特性
Table 2. Main material characteristics
材料 弹性模量/GPa 泊松比 密度/(kg·m-3) 阻尼 钢材 206.0 0.30 7 850 0.010 单元板 45.0 0.35 40 0.010 混凝土 32.5 0.20 2 400 0.030 表 3 FMBEM与BEM计算效率对比
Table 3. Comparison of calculation efficiency between FMBEM and BEM
节点数 单元数 频率/Hz 计算时间/s FMBEM BEM 160 767 91 672 20.0 468.90 6 995.5 25.0 398.00 3 524.0 31.5 2 485.10 3 162.2 40.0 956.80 3 262.8 50.0 662.20 3 336.4 63.0 1 186.10 3 454.9 80.0 1 484.90 3 659.5 100.0 75.00 3 953.3 125.0 3 274.50 7 667.3 160.0 5 43.77 9 421.4 200.0 3 956.90 8 075.7 250.0 4 468.80 6 082.6 共计 21 378.00 62 656.4 -
[1] LEE H M, WANG Zhao-meng, LIM K M, et al. A review of active noise control applications on noise barrier in three- dimensional/open space: myths and challenges[J]. Fluctuation and Noise Letters, 2019, 18(4): 1930002. doi: 10.1142/S0219477519300027 [2] 陆维姗. 基于声场分布特性的高速铁路声屏障降噪效果研究[D]. 北京: 中国铁道科学研究院, 2019.LU Wei-shan. Research on noise reduction effect of high-speed railway sound barrier based on sound field distribution characteristics[D]. Beijing: China Academy of Railway Sciences, 2019. (in Chinese) [3] 李小珍, 杨得旺, 高慰, 等. 高速铁路半、全封闭声屏障振动与降噪效果研究[J]. 噪声与振动控制, 2018, 38(增1): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1010.htmLI Xiao-zhen, YANG De-wang, GAO Wei, et al. Study on vibration and noise reduction of semi- or fully-enclosed noise barriers of high-speed railways[J]. Noise and Vibration Control, 2018, 38(S1): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1010.htm [4] ZHANG Xun, LIU Run, CAO Zhi-yang, et al. Acoustic performance of a semi-closed noise barrier installed on a high-speed railway bridge: measurement and analysis considering actual service conditions[J]. Measurement, 2019, 138: 386-399. doi: 10.1016/j.measurement.2019.02.030 [5] LI Qi, XU You-lin, WU Ding-jun. Concrete bridge-borne low-frequency noise simulation based on train-track-bridge dynamic interaction[J]. Journal of Sound and Vibration, 2012, 331(10): 2457-2470. doi: 10.1016/j.jsv.2011.12.031 [6] SONG Xiao-dong, LI Qi. Reconstruction of low-frequency bridge noise using an inverse modal acoustic transfer vector method[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(2): 224-243. doi: 10.1177/1461348418817095 [7] 韩江龙, 吴定俊, 李奇. 城市轨道交通槽型梁结构噪声计算与分析[J]. 工程力学, 2013, 30(2): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302027.htmHAN Jiang-long, WU Ding-jun, LI Qi. Calculation and analysis of structure-born noise from urban rail transit trough girders[J]. Engineering Mechanics, 2013, 30(2): 190-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302027.htm [8] 许代言, 刘林芽. 轨道交通双箱单室箱型梁结构改进后减振降噪效果分析[J]. 城市轨道交通研究, 2017(8): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201708008.htmXU Dai-yan, LIU Lin-ya. Analysis of vibration reduction and noise reduction effect of double box single cell box girder structure in rail transit[J]. Urban Rail Transit, 2017(8): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201708008.htm [9] 刘林芽, 秦佳良, 刘全民, 等. 轨道交通槽形梁结构低频噪声预测与优化[J]. 铁道学报, 2018, 40(8): 107-115. doi: 10.3969/j.issn.1001-8360.2018.08.014LIU Lin-ya, QIN Jia-liang, LIU Quan-min, et al. Prediction and optimization of structure-borne low-frequency noise from a rail transit trough girder[J]. Journal of the China Railway Society, 2018, 40(8): 107-115. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.08.014 [10] LIU Lin-ya, SONG Rui, ZHOU Yun-lai, et al. Noise and vibration mitigation performance of damping pad under CRTS-Ⅲ ballastless track in high speed rail viaduct[J]. KSCE Journal of Civil Engineering, 2019, 23(8): 3525-3534. doi: 10.1007/s12205-019-1947-4 [11] 李克冰, 张楠, 夏禾, 等. 高速铁路32 m简支槽形梁桥结构噪声分析[J]. 中国铁道科学, 2015, 36(4): 52-59. doi: 10.3969/j.issn.1001-4632.2015.04.09LI Ke-bin, ZHANG Nan, XIA He, et al. Analysis on structure-borne noise of 32 m simply-supported trough girder bridge for high speed railway[J]. China Railway Science, 2015, 36(4): 52-59. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.04.09 [12] 罗文俊, 程龙. 城市轨道交通单线U型梁振动与噪声分析[J]. 铁道工程学报, 2017, 34(5): 89-93. doi: 10.3969/j.issn.1006-2106.2017.05.016LUO Wen-jun, CHENG Long. Vibration and noise analysis of single line U beam in urban rail transit[J]. Journal of Railway Engineering Society, 2017, 34(5): 89-93. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.05.016 [13] LI Xiao-zhen, ZHANG Xun, ZHANG Zhi-jun, et al. Experimental research on noise emanating from concrete box-girder bridges on intercity railway lines[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2013, 229(2): 125 -135. [14] 张迅, 王曦阳, 刘蕊, 等. U肋加劲板的声振特性研究[J]. 中国公路学报, 2020, 33(7): 76-85. doi: 10.3969/j.issn.1001-7372.2020.07.008ZHANG Xun, WANG Xi-yang, LIU Rui, et al. Vibro-acoustic characteristics of U-rib stiffened slab[J]. China Journal of Highway and Transport, 2020, 33(7): 76-85. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.07.008 [15] LI Qi, SONG Xiao-dong, WU Ding-jun. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges[J]. Journal of the Acoustical Society of America, 2014, 135(5): 2718-2726. doi: 10.1121/1.4871357 [16] HE Yuan-peng, CHENG Gong, HAN Jian, et al. Modeling noise radiation from concrete box girder bridges as an infinitely long periodic structure excited by a high-speed train[J]. Journal of Vibration and Acoustic, 2021, 143: 031015. doi: 10.1115/1.4050428 [17] SONG Li-zhong, LI Xiao-dong, ZHENG Jing, et al. Vibro-acoustic analysis of a rail transit continuous rigid frame box girder bridge based on a hybrid WFE-2D BE method[J]. Applied Acoustics, 2020, 157: 107028. doi: 10.1016/j.apacoust.2019.107028 [18] LU Zheng, LI Jun-zuo, LI Qi. Vibration analysis of coupled multilayer structures with discrete connections for noise prediction[J]. International Journal of Structural Stability and Dynamics, 2020, 20(4): 2050051. doi: 10.1142/S0219455420500510 [19] LIU Cheng, CHEN Lei-lei, ZHAO Wen-chang, et al. Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in two dimensions[J]. Engineering Analysis with Boundary Elements, 2017, 85: 142-157. doi: 10.1016/j.enganabound.2017.09.009 [20] ZHAO Wen-chang, ZHENG Chang-jun, CHEN Hai-bo. Acoustic topology optimization of porous material distribution based on an adjoint variable FMBEM sensitivity analysis[J]. Engineering Analysis with Boundary Elements, 2019, 99: 60-75 doi: 10.1016/j.enganabound.2018.11.003 [21] 刘林芽, 许代言. 快速多极边界元计算高架箱形梁结构噪声辐射特性[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(6): 1095-1099. doi: 10.3963/j.issn.2095-3844.2015.06.001LIU Lin-ya, XU Dai-yan. Fast multipole boundary element method to calculate elevated box beam structure noise radiation characteristics[J]. Journal of Wuhan University of Technology and Engineering (Transportation Science and Engineering), 2015, 39(6): 1095-1099. (in Chinese) doi: 10.3963/j.issn.2095-3844.2015.06.001 [22] ZHAO Cai-you, WANG Ping. Minimizing noise from metro viaduct railway lines by means of elastic mats and fully closed noise barriers[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1828-1836. doi: 10.1177/0954409717752200 [23] 伍向阳. 铁路全封闭声屏障降噪效果试验研究[J]. 铁道标准设计, 2019, 63(12): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912033.htmWU Xiang-yang. Experimental study on noise reduction effect of fully enclosed sound barrier on railway[J]. Railway Standard Design, 2019, 63(12): 177-181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912033.htm [24] LI Qiu-tong, DUHAMEL D, LUO Yan-yun, et al. Analysing the acoustic performance of a nearly-enclosed noise barrier using scale model experiments and a 2.5-D BEM approach[J]. Applied Acoustics, 2020, 158: 107079. doi: 10.1016/j.apacoust.2019.107079 [25] 吴小萍, 费广海, 廖晨彦. 高速铁路不同高度声屏障的降噪效果分析[J]. 中国铁道科学, 2015, 36(3): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503020.htmWU Xiao-ping, FEI Guang-hai, LIAO Chen-yan. Analysis on noise reduction effect of sound barriers with different heights for high speed railway[J]. China Railway Science, 2015, 36(3): 127-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503020.htm [26] 费广海, 吴小萍, 廖晨彦. 声屏障高度对高铁(客运专线)降噪效果的影响[J]. 中国环境科学, 2015, 35(8): 2539-2545. doi: 10.3969/j.issn.1000-6923.2015.08.036FEI Guang-hai, WU Xiao-ping, LIAO Chen-yan. The influence of sound barriers with different heights on the noise reduction effect of high-speed railway[J]. China Environmental Science, 2015, 35(8): 2539-2545. (in Chinese) doi: 10.3969/j.issn.1000-6923.2015.08.036 [27] 张小安, 翟婉明, 石广田, 等. 城市轨道交通直壁式声屏障车致振动噪声研究[J]. 兰州交通大学学报, 2019, 38(1): 78-87. doi: 10.3969/j.issn.1001-4373.2019.01.013ZHANG Xiao-an, ZHAI Wan-ming, SHI Guang-tian, et al. Structure noise of straight-wall noise barrier in urban rail transit[J]. Journal of Lanzhou Jiaotong University, 2019, 38(1): 78-87. (in Chinese) doi: 10.3969/j.issn.1001-4373.2019.01.013 [28] 张晓芸, 石广田, 王开云, 等. 高速铁路箱梁桥-声屏障结构振动噪声初探[J]. 兰州交通大学学报, 2020, 39(2): 76-84. doi: 10.3969/j.issn.1001-4373.2020.02.012ZHANG Xiao-yun, SHI Guang-tian, WANG Kai-yun, et al. Preliminary study on structure-borne noise of box girder bridge-sound barrier in high speed railway[J]. Journal of Lanzhou Jiaotong University, 2020, 39(2): 76-84. (in Chinese) doi: 10.3969/j.issn.1001-4373.2020.02.012 [29] 王党雄, 李小珍, 张迅, 等. 轨道结构形式对箱梁中高频振动的影响研究[J]. 土木工程学报, 2017, 50(8): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201708008.htmWANG Dang-xiong, LI Xiao-zhen, ZHANG Xun, et al. Study on the influences of different tracks on the medium- and high-frequency vibrations of a box girder[J]. China Civil Engineering Journal, 2017, 50(8): 68-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201708008.htm [30] LIANG Lin, LI Xiao-zhen, ZHENG Jing, et al. Structure-borne noise from long-span steel truss cable-stayed bridge under damping pad floating slab: experimental and numerical analysis[J]. Applied Acoustics, 2020, 157: 106988. doi: 10.1016/j.apacoust.2019.07.036 -