Prediction model of rail crack initiation using bond-based peridynamics theory
Article Text (Baidu Translation)
-
摘要: 为克服经典连续介质力学在解决不连续问题时的困难,采用近场动力学方法预测铁路钢轨的裂纹萌生,以避免数学构架在不连续处的失效问题;建立了考虑轨枕支承作用的钢轨形变分析模型,分析了模型参数合理取值及收敛性,计算了车轮滚动接触荷载下的钢轨位移;根据近场动力学损伤理论,以键伸长率为指标,分别研究了车轮全滑动、粘着-滑动及无摩擦状态对铁路钢轨裂纹萌生的影响规律。计算结果表明:近场动力学模型和经典连续介质力学模型的钢轨形变计算结果十分吻合,最大计算误差均在8%以内,验证了所建近场动力学模型的正确性;当裂纹萌生于钢轨轨头时,其启裂位置不在钢轨表面,而在钢轨表面以下约2 mm的位置,与现场观察结果一致,验证了近场动力学方法在模拟铁路钢轨疲劳裂纹萌生时的适用性;当车轮荷载位于钢轨跨中时,在车轮状态由全滑动向无摩擦转变的过程中,钢轨疲劳裂纹的萌生起点位置由轨头转移到轨底、由接触斑前端转移到接触斑中心,裂纹类型由局部滚动接触疲劳裂纹转变为整体结构疲劳裂纹,键最大伸长率由1.1×10-3降低到8.1×10-4,因此,增大切向接触应力会降低钢轨裂纹萌生寿命;当车轮荷载位于轨枕上方时,随车轮滚动状态的改变,钢轨裂纹的萌生位置始终位于轨头。Abstract: The peridynamic method is used to predict the crack initiation of rails to overcome the difficulty of classical continuum mechanics in solving discontinuous problems and to prevent the failure of mathematical framework in discontinuities. The deformation analysis model of the rail was established by considering the support of the sleeper. The reliability of parameter values and the convergence of the model were analyzed, and the displacements of the rail under wheel-rolling contact loads were calculated. Based on the peridynamic damage theory, taking the bond stretch rate as index, the effects of wheel full sliding, adhesive-sliding, and frictionless state on the crack initiation of rails were investigated. Calculation results show that the rail deformations calculated using the peridynamic model and the classical continuum mechanics model are consistent. Moreover, the maximum calculation errors are within 8%, verifying the preciseness of the peridynamic model. When the fatigue crack is initiated on the rail head, the crack initiation position is approximately 2 mm below the surface of the rail instead of on the rail surface. This result is consistent with field observation, demonstrating the applicability of the peridynamic method in simulating the fatigue crack initiation of railway rails. When the wheel load is at the midspan of rails and the wheel transits from full sliding to frictionless state, the starting location of fatigue crack initiation of the rails is transferred from the rail head to the bottom and from the front end to the center of contact patch. The crack type changes from local rolling contact fatigue to integral structural fatigue, and the maximum bond stretch decreases from 1.1×10-3 to 8.1×10-4. Therefore, an increase of the tangential contact stress decreases the crack initiation life of the rail. When the wheel load is above the sleeper, the crack initiation position of the rail is always at the rail head. 11 figs, 30 refs.
-
Key words:
- railway engineering /
- rail /
- fatigue crack /
- prediction model /
- peridynamics /
- numerical simulation /
- deformation analysis
-
-
[1] RINGSBERG J W, LOO-MORREY M, JOSEFSON B L, et al. Prediction of fatigue crack initiation for rolling contact fatigue[J]. International Journal of Fatigue, 2000, 22(3): 205-215. doi: 10.1016/S0142-1123(99)00125-5 [2] 樊文刚, 刘月明, 李建勇. 高速铁路钢轨打磨技术的发展现状与展望[J]. 机械工程学报, 2018, 54(22): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201822022.htmFAN wen-gang, LIU Yue-ming, LI Jian-yong. Development status and prospect of rail grinding technology for high speed railway[J]. Journal of Mechanical Engineering, 2018, 54(22): 184-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201822022.htm [3] FRANKLIN F J, WIDIYARTA I, KAPOOR A. Computer simulation of wear and rolling contact fatigue[J]. Wear, 2001, 251: 949-955. doi: 10.1016/S0043-1648(01)00732-3 [4] KAPOOR A, FRANKLIN F J. Tribological layers and the wear of ductile materials[J]. Wear, 2000, 245(1/2): 204-215. http://www.sciencedirect.com/science/article/pii/S0043164800004804 [5] 卢耀辉, 向鹏霖, 曾京, 等. 高速列车转向架构架动应力计算与疲劳全寿命预测[J]. 交通运输工程学报, 2017, 17(1): 62-70. doi: 10.3969/j.issn.1671-1637.2017.01.008LU Yao-hui, XIANG Peng-lin, ZENG Jing, et al. Dynamic stress calculation and fatigue whole life prediction of bogie frame for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 62-70. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.01.008 [6] FRANKIN F J, CHUNG T, KAPOOR A. Ratcheting and fatigue-led wear in rail-wheel contact[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 949-955. doi: 10.1046/j.1460-2695.2003.00703.x [7] PUN L C, KAN Qian-hua, MUTTON P J, et al. An efficient computational approach to evaluate the ratcheting performance of rail steels under cyclic rolling contact in service[J]. International Journal of Mechanical Sciences, 2015, 101/102: 214-226. doi: 10.1016/j.ijmecsci.2015.08.008 [8] LIU Yong-ming, MAHADEVAN S. Multiaxial high-cycle fatigue criterion and life prediction for metals[J]. International Journal of Fatigue, 2005, 27(7): 790-800. doi: 10.1016/j.ijfatigue.2005.01.003 [9] JIANG Yan-yao, XU Bi-qiang, SEHITOGLU H. Three- dimensional elastic-plastic stress analysis of rolling contact[J]. Journal of Tribology, 2002, 124: 699-708. doi: 10.1115/1.1491978 [10] 王建西, 许玉德, 王志臣. 影响钢轨疲劳裂纹萌生寿命的主要因素分析[J]. 同济大学学报(自然科学版), 2009, 37(7): 914-918. doi: 10.3969/j.issn.0253-374x.2009.07.013WANG Jian-xi, XU Yu-de, WANG Zhi-chen. Analysis of major influencing factors of rolling contact fatigue crack initiation life of rails[J]. Journal of Tongji University (Natural Science), 2009, 37(7): 914-918. (in Chinese) doi: 10.3969/j.issn.0253-374x.2009.07.013 [11] 王建西, 许玉德, 练松良, 等. 随机轮轨力作用下钢轨滚动接触疲劳裂纹萌生寿命预测仿真[J]. 铁道学报, 2010, 32(3): 66-70. doi: 10.3969/j.issn.1001-8360.2010.03.012WANG Jian-xi, XU Yu-de, LIAN Song-liang, et al. Simulation of predicting RCF crack initiation life of rails under random wheel-rail forces[J]. Journal of the China Railway Society, 2010, 32(3): 66-70. (in Chinese) doi: 10.3969/j.issn.1001-8360.2010.03.012 [12] 王少锋, 刘林芽, 刘海涛, 等. 基于损伤累积和权重参数的重载铁路曲线内轨裂纹萌生特征及剥离掉块分析[J]. 中国铁道科学, 2017, 38(1): 29-36. doi: 10.3969/j.issn.1001-4632.2017.01.05WANG Shao-feng, LIU Lin-ya, LIU Hai-tao, et al. Crack initiation and spalling analysis of inner rail on heavy haul railway curve based on damage accumulation and weight parameter[J]. China Railway Science, 2017, 38(1): 29-36. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.01.05 [13] 周宇, 木东升, 邝迪峰, 等. 城市轨道交通钢轨磨耗和裂纹萌生分析与选型建议[J]. 交通运输工程学报, 2018, 18(4): 82-89. doi: 10.3969/j.issn.1671-1637.2018.04.009ZHOU Yu, MU Dong-sheng, KUANG Di-feng, et al. Analysis on rail wear and crack initiation and recommendation on rail selection in urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 82-89. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.04.009 [14] EI-SAYED H M, LOTFY M, EI-DIN ZOHNY H N, et al. Prediction of fatigue crack initiation life in railheads using finite element analysis[J]. Ain Shams Engineering Journal, 2018, 9(4): 2329-2342. doi: 10.1016/j.asej.2017.06.003 [15] 邓铁松, 李伟, 温泽峰, 等. 钢轨滚动接触疲劳裂纹萌生寿命预测[J]. 润滑与密封, 2013, 38(8): 46-51. doi: 10.3969/j.issn.0254-0150.2013.08.010DENG Tie-song, LI Wei, WEN Ze-feng, et al. Prediction on rolling contact fatigue crack initiation life of rails[J]. Lubrication Engineering, 2013, 38(8): 46-51. (in Chinese) doi: 10.3969/j.issn.0254-0150.2013.08.010 [16] KLEINA P A, FOULKA J W, CHEN E P, et al. Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods[J]. Theoretical and Applied Fracture Mechanics, 2001, 37: 99-166. doi: 10.1016/S0167-8442(01)00091-X [17] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 175-209. http://isn-csm.mit.edu/literature/2000-jmps-Silling.pdf [18] 刘硕, 方国东, 付茂青, 等. 近场动力学与有限元方法耦合求解复合材料损伤问题[J]. 中国科学: 技术科学, 2019, 49(10): 1215-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201910011.htmLIU Shuo, FANG Guo-dong, FU Mao-qing, et al. Study of composite material damage problem using coupled peridynamics and finite element method[J]. Scientia Sinica Technologica, 2019, 49(10): 1215-1222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201910011.htm [19] BABER F, GUVEN I. Solder joint fatigue life prediction using peridynamic approach[J]. Microelectronics Reliability, 2017, 79: 20-31. doi: 10.1016/j.microrel.2017.10.004 [20] 李潘. 近场动力学损伤断裂模拟方法及其在PBX炸药裂纹扩展中的应用[D]. 绵阳: 中国工程物理研究院, 2018.LI Pan. Peridynamic damage simulation method and its application on crack propagation analysis of PBX energetic materials[D]. Mianyang: China Academy of Engineering Physics, 2018. (in Chinese) [21] 李天一, 章青, 夏晓丹, 等. 考虑混凝土材料非均质特性的近场动力学模型[J]. 应用数学和力学, 2018, 39(8): 913-924. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201808005.htmLI Tian-yi, ZHANG Qing, XIA Xiao-dan, et al. A peridynamic model for heterogeneous concrete materials[J]. Applied Mathematics and Mechanics, 2018, 39(8): 913-924. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201808005.htm [22] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers and Structures, 2005, 83(17/18): 1526-1535. http://www.sciencedirect.com/science/article/pii/S0045794905000805 [23] GERSTLE W H, SAU N, SAKHAVAND N. On peridynamic computational simulation of concrete structures[J]. International Concrete Abstracts Portal, 2009, 265: 245-264. http://www.researchgate.net/publication/279556113_On_peridynamic_computational_simulation_of_concrete_structures [24] 赵树立, 余音, 徐武. 疲劳多裂纹扩展的常规态型近场动力学分析[J]. 哈尔滨工业大学学报, 2019, 51(4): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201904004.htmZHAO Shu-li, YU Yin, XU Wu. Ordinary state-based peridynamics method for fatigue multi-crack propagation[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 19-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201904004.htm [25] MACEK R W, SILLING S A. Peridynamics via finite element analysis[J]. Finite Elements in Analysis and Design, 2007, 43(15): 1169-1178. doi: 10.1016/j.finel.2007.08.012 [26] KILIC B, MADENCI E. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory[J]. Theoretical and Applied Fracture Mechanics, 2010, 53(3): 194-204. doi: 10.1016/j.tafmec.2010.08.001 [27] CARTER F W. On the action of locomotive driving wheel[J]. Proceeding of Royal Society of London, 1926, 201: 151-157. [28] EKBERG A, KABO E, ANDERSSON H. An engineering model for prediction of rolling contact fatigue of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909. doi: 10.1046/j.1460-2695.2002.00535.x [29] BENOIT D, SALIMA B, MARION R. Multiscale characterization of head check initiation on rails under rolling contact fatigue: Mechanical and microstructure analysis[J]. Wear, 2016, 366/367: 383-391. doi: 10.1016/j.wear.2016.06.019 [30] 田常海. 提速线路钢轨的大修周期[J]. 铁道学报, 2005, 27(4): 78-84. doi: 10.3321/j.issn:1001-8360.2002.04.017TIAN Chang-hai. Major repair cycles of rails of speed raising railway lines[J]. Journal of the China Railway Society, 2002, 27(4): 78-84. (in Chinese) doi: 10.3321/j.issn:1001-8360.2002.04.017 -