Effect of material deterioration on slab ballastless track performance under frost heaving and freezing-thawing
-
摘要: 以哈大高速铁路路基冻胀区板式无砟轨道为研究对象,开展了快速冻融循环作用下C60、C40混凝土和砂浆材料标准立方体试件轴心受压和劈裂抗拉破坏试验,研究了冻融循环作用下材料性能劣化规律;在此基础上,建立了考虑限位凸台、环形树脂和层间黏结接触性能的CRTS Ⅰ板式无砟轨道-路基冻胀冻融空间有限元模型,研究了冻融损伤后轨道的静力特性,揭示了底座板的受力状态与损伤特征。研究结果表明:提高混凝土强度等级可显著减缓冻融循环对材料的劣化剥蚀作用,冻融循环加剧会导致结构界面接触状态显著恶化;随着冻融循环作用次数的增加,砂浆层和底座板材料性能劣化显著,弹性模量、层间黏结强度和轴心抗拉强度均大幅减小;与未冻融工况相比,300次冻融循环后,C60、C40混凝土和砂浆的峰值抗压强度降幅分别为14.7%、34.6%和29.9%,C60混凝土与砂浆胶结界面轴心抗拉强度降幅达到90.6%,C60、C40混凝土和砂浆轴心抗拉强度降幅均超过56%;在典型冻胀条件(冻胀波长为10 m,冻胀峰值为8 mm)下,冻胀中心处轨道各结构层上表面均受最大拉应力,在冻胀波脚处出现最大压应力;随着冻融循环次数的增加,轨道板和底座板所受最大拉应力亦不断增加。可见,在设计寒区板式无砟轨道时,底座板为主要控制性构件,底座板中部冻胀为最不利工况。Abstract: Taking the slab ballastless track in the frost heaving area of the Harbin-Dalian High-Speed Railway subgrade as the research object, the deterioration laws of materials properties under freezing-thawing cycles were investigated through the axial compression and splitting tensile failure tests on the standard cubic specimens of C60, C40 concrete and mortar under rapid freezing-thawing cycles. On this basis, a spatial finite element model was established for a CRTS Ⅰ slab ballastless track-subgrade frost heaving and freezing-thawing, considering the limit retaining boss, ring-shaped resin and interlayer bonding contact properties. The static properties of tracks after the freezing-thawing damage were studied, and the stress states and damage characteristics of the base plate were revealed. Research results demonstrate that the use of high strength grade concrete considerably decelerates the material deterioration and erosion due to the freezing-thawing cycle. Intense freezing-thawing cycles remarkably deteriorate the contact state of the structural interface. As the number of freezing-thawing cycle increases, the materials properties of mortar layer and base plate worsen significantly, their elastic moduli, interlayer bonding strengths, and axial tensile strengths decrease substantially. The peak compressive strengths of C60, C40 concrete and mortar decrease by 14.7%, 34.6%, and 29.9%, respectively, after 300 freezing-thawing cycles compared to those without any freezing-thawing cycles. The axial tensile strength of cementation interface between the C60 concrete and the mortar decreases by 90.6%. The axial tensile strengths of C60, C40 concrete and mortar decrease by more than 56%. Under the typical frost heaving condition (the frost heaving wave length is 10 m, and the frost heaving peak is 8 mm), the maximum tensile stress is observed at the upper surfaces of all structural layers of the track at the frost heaving center, whereas the maximum compressive stress is observed at the foot of the frost heaving wave. As the number of freezing-thawing cycle increases, the maximum tensile stresses of track slab and base plate also increase. Hence, when designing slab ballastless tracks in cold areas, the base plate is the main control component, and the frost heaving in the middle of the base plate is a highly unfavorable condition. 6 tabs, 11 figs, 32 refs.
-
表 1 冻融循环作用下试件的峰值抗压强度
Table 1. Peak compressive strengths of specimens under freezing-thawing cycles
N/次 峰值抗压强度/MPa C60混凝土 砂浆 C40混凝土 0 64.41 3.04 36.24 50 62.71 2.75 33.62 100 61.98 2.66 32.02 150 59.06 2.50 29.29 200 58.09 2.41 27.35 250 56.87 2.24 25.53 300 54.93 2.13 23.70 表 2 冻融循环作用下试件轴心抗拉强度
Table 2. Axial tensile strengths of specimens under freezing-thawing cycles
N/次 轴心抗拉强度/MPa HT试件 OT试件 砂浆试件 LT试件 0 2.85 1.81 0.73 2.39 50 2.34 1.66 0.64 2.06 100 2.04 1.61 0.56 1.87 150 1.75 1.02 0.49 1.51 200 1.63 0.87 0.41 1.47 250 1.39 0.30 0.35 1.26 300 1.23 0.17 0.31 1.02 降幅/% 56.8 90.6 57.5 57.3 表 3 不同冻融循环次数下材料的力学参数
Table 3. Mechanical parameters of materials under different freezing-thawing cycles
N/次 材料编号 摩擦因数 HT试件 砂浆 LT试件 E/GPa u f/MPa E/GPa u f/MPa E/GPa u f/MPa 300 1 0.04 33.80 0.13 1.230 0.140 0.090 0.310 13.14 0.130 1.02 2 0.19 34.90 0.17 2.040 0.245 0.120 0.520 19.59 0.150 1.48 3 0.35 36.00 0.20 2.850 0.350 0.150 0.730 26.04 0.180 1.93 4 0.50 32.50 0.200 2.39 250 1 0.08 34.27 0.14 1.390 0.150 0.100 0.350 13.96 0.140 1.26 2 0.22 35.14 0.17 2.120 0.250 0.125 0.540 20.14 0.160 1.64 3 0.36 36.00 0.20 2.850 0.350 0.150 0.730 26.32 0.180 2.01 4 0.50 32.50 0.200 2.39 200 1 0.24 34.81 0.15 1.630 0.180 0.110 0.410 16.44 0.150 1.47 2 0.33 35.41 0.18 2.240 0.265 0.130 0.570 21.79 0.170 1.78 3 0.41 36.00 0.20 2.850 0.350 0.150 0.730 27.15 0.180 2.08 4 0.50 32.50 0.200 2.39 150 1 0.28 35.23 0.16 1.750 0.190 0.120 0.490 17.31 0.160 1.51 2 0.35 35.62 0.18 2.300 0.270 0.135 0.610 22.37 0.170 1.80 3 0.43 36.00 0.20 2.850 0.350 0.150 0.730 27.44 0.190 2.10 4 0.50 32.50 0.200 2.39 100 1 0.44 35.55 0.18 2.040 0.200 0.130 0.560 18.61 0.180 1.87 2 0.46 35.78 0.19 2.445 0.275 0.140 0.645 23.24 0.187 2.04 3 0.48 36.00 0.20 2.850 0.350 0.150 0.730 27.87 0.193 2.22 4 0.50 32.50 0.200 2.39 50 1 0.46 35.76 0.19 2.340 0.220 0.140 0.640 20.18 0.190 2.06 2 0.47 35.88 0.20 2.595 0.285 0.145 0.685 24.29 0.193 2.17 3 0.49 36.00 0.20 2.850 0.350 0.150 0.730 28.39 0.197 2.28 4 0.50 32.50 0.200 2.39 0 0.50 36.00 0.20 2.850 0.350 0.150 0.730 32.50 0.200 2.39 表 4 轨道结构参数
Table 4. Structural parameters of track
结构 泊松比 弹性模量/GPa 密度/(kg·m-3) 备注 钢轨 0.30 210.00 7 800 CHN60钢轨 轨道板 0.20 36.00 2 500 C60混凝土 限位凸台 0.20 33.00 2 500 C40混凝土 环形树脂 0.02 1 100 黏结性能优异 砂浆层 0.15 0.35 2 000 低温敏感性高 底座板 0.20 33.00 2 500 C40混凝土 路基基床 0.12 2 000 面刚度为76 MPa·m-1 表 5 哈大高速铁路路基变形监测结果
Table 5. Monitoring result of subgrade deformation of Harbin-Dalian High-Speed Railway
类型 测点总数 不同冻胀峰值(mm)的测点数 0~5 5~10 10~15 ≥15 路堤 179 844 99 410 26 830 3 280 113 路堑 101 826 59 026 20 230 4 460 939 表 6 冻融循环下轨道板和底座板最大拉应力
Table 6. Maximum tensile stresses of track slab and base plate under freezing-thawing cycles
N/次 轨道板最大拉应力/MPa 底座板最大拉应力/MPa 板中冻胀 板缝冻胀 板中冻胀 板缝冻胀 300 2.78 0.71 3.68 3.31 250 2.77 0.73 3.65 3.39 200 2.74 0.74 3.63 3.40 150 2.70 0.76 3.61 3.47 100 2.65 0.77 3.57 3.52 50 2.63 0.77 3.55 3.53 0 2.62 0.78 3.51 2.12 -
[1] MA Fu-xun, XI Rui-jie, XU Nan. Analysis of railway subgrade frost heave deformation based on GPS[J]. Geodesy and Geodynamics, 2016, 7(2): 143-147. doi: 10.1016/j.geog.2016.04.001 [2] ZOU Du-jian, WANG Zhong-zhen, SHEN Ming-ming, et al. Improvement in freeze-thaw durability of recycled aggregate permeable concrete with silane modification[J]. Construction and Building Materials, 2021, 268: 121097. doi: 10.1016/j.conbuildmat.2020.121097 [3] FEO L, ASCIONE F, PENNA R, et al. An experimental investigation on freezing and thawing durability of high performance fiber reinforced concrete (HPFRC)[J]. Composite Structures, 2020, 234: 111673. doi: 10.1016/j.compstruct.2019.111673 [4] 叶阳升, 王仲锦, 程爱君, 等. 路基的填料冻胀分类及防冻层设置[J]. 中国铁道科学, 2007, 28(1): 1-7. doi: 10.3321/j.issn:1001-4632.2007.01.001YE Yang-sheng, WANG Zhong-jin, CHENG Ai-jun, et al. Frost heave classification of railway subgrade filling material and the design of anti-freezing layer[J]. China Railway Science, 2007, 28(1): 1-7. (in Chinese) doi: 10.3321/j.issn:1001-4632.2007.01.001 [5] 盛岱超, 张升, 李希. 高速列车与路基冻胀相互作用机理[J]. 岩土工程学报, 2013, 35(12): 2186-2191. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312008.htmSHENG Dai-chao, ZHANG Sheng, LI Xi. Effects of train loads on frost heave of embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2186-2191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312008.htm [6] SHENG Dai-chao, ZHANG Sheng, NIU Fun. A potential new frost heave mechanism in high-speed railway embankment[J]. Géotechnique, 2014, 64(2): 144-154. doi: 10.1680/geot.13.P.042 [7] 张玉芝, 王天亮, 张飞, 等. 不同细粒含量下高铁路基粗颗粒填料水气迁移特征与冻胀特性[J]. 中国铁道科学, 2021, 42(4): 1-8. doi: 10.3969/j.issn.1001-4632.2021.04.01ZHANG Yu-zhi, WANG Tian-liang, ZHANG Fei, et al. Water-vapor migration and frost heave characteristics of coarse particle filler with different fine contents in high speed railway subgrade[J]. China Railway Science, 2021, 42(4): 1-8. (in Chinese) doi: 10.3969/j.issn.1001-4632.2021.04.01 [8] 刘建龙, 滕继东, 张升, 等. 气态水迁移诱发非饱和粗粒土冻胀的试验研究[J]. 岩土工程学报, 2021, 43(7): 1297-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107019.htmLIU Jian-long, TENG Ji-dong, ZHANG Sheng, et al. Experimental study on frost heave in unsaturated coarse-grained soil caused by vapour transfer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1297-1305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107019.htm [9] 王兴, 赵相卿, 贾海峰, 等. 季节性冻土区铁路路基含水率变化特征研究[J]. 铁道勘察, 2021, 47(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202101008.htmWANG Xing, ZHAO Xiang-qing, JIA Hai-feng, et al. Study on the variation characteristics of moisture content of railway subgrade in seasonally frozen soil area[J]. Railway Investigation and Surveying, 2021, 47(1): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202101008.htm [10] 张栋, 闫啸坤, 曾帅, 等. 重载铁路路基冻害的防治措施效果分析[J]. 铁道建筑, 2021, 61(9): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202109019.htmZHANG Dong, YAN Xiao-kun, ZENG Shuai, et al. Effect analysis of prevention measures for frost damaged of heavy haul railway subgrade[J]. Railway Engineering, 2021, 61(9): 94-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202109019.htm [11] 许健, 牛富俊, 牛永红, 等. 寒区高速铁路路基冻胀数值模型及防冻胀措施[J]. 中国铁道科学, 2011, 32(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703001.htmXU Jian, NIU Fu-jun, NIU Yong-hong, et al. Analysis on the effect of replacing-soil method on inhibiting frost heave of railway roadbed in seasonal frozen soil region[J]. China Railway Science, 2011, 32(5): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703001.htm [12] 刘华, 牛富俊, 牛永红, 等. 季节性冻土区高速铁路路基填料及防冻层设置研究[J]. 岩石力学与工程学报, 2011, 30(12): 2549-2557. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112021.htmLIU Hua, NIU Fu-jun, NIU Yong-hong, et al. Study of design of filling material and setting anti-frost layer for high-speed railway roadbed in seasonally frozen regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2549-2557. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112021.htm [13] 赵世运, 杨彦克, 李福海, 等. 高速铁路路基冻胀特性水泥掺入的改性研究[J]. 铁道学报, 2014, 36(5): 71-75. doi: 10.3969/j.issn.1001-8360.2014.05.012ZHAO Shi-yun, YANG Yan-ke, LI Fu-hai, et al. Research on cement-modified frost heave characteristics of high-speed railway subgrade[J]. Journal of the China Railway Society, 2014, 36(5): 71-75. (in Chinese) doi: 10.3969/j.issn.1001-8360.2014.05.012 [14] 曹太平. 季节性冻土区铁路路基冻胀变形特性研究[J]. 铁道勘察, 2019, 45(1): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC201901013.htmCAO Tai-ping. Study on frost heave deformation characteristics of railway subgrade in seasonal frozen soil region[J]. Railway Investigation and Surveying, 2019, 45(1): 59-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC201901013.htm [15] 邰博文, 刘建坤, 李旭, 等. 寒区高速铁路路基冻胀数值模型及防冻胀措施[J]. 中国铁道科学, 2017, 38(3): 1-9. doi: 10.3969/j.issn.1001-4632.2017.03.01TAI Bo-wen, LIU Jian-kun, LI Xu, et al. Numerical model of frost heaving and anti-frost heave measures of high speed railway subgrade in cold region[J]. China Railway Science, 2017, 38(3): 1-9. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.03.01 [16] 蔡德钩. 高速铁路季节性冻土路基冻胀时空分布规律试验[J]. 中国铁道科学, 2016, 37(3): 16-21. doi: 10.3969/j.issn.1001-4632.2016.03.003CAI De-gou. Test on frost heaving spatial-temporal distribution of high speed railway subgrade in seasonal frozen soil region[J]. China Railway Science, 2016, 37(3): 16-21. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.03.003 [17] 郭毅. 高速铁路路基冻胀变形引起的轨道结构变形特性及其对行车的动力影响研究[D]. 成都: 西南交通大学, 2016.GUO Yi. Study on the effect of subgrade frost heaving on the deformation properties of track structure and its vehicle dynamic behavior in high-speed railway[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese) [18] 蔡小培, 梁延科, 谭诗宇, 等. 路基冻胀地区CRTS Ⅰ型板式无砟轨道结构变形与离缝特征分析[J]. 北京交通大学学报, 2017, 41(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201701002.htmCAI Xiao-pei, LIANG Yan-ke, TAN Shi-yu, et al. Deformation and seam characteristics analysis of CRTS Ⅰ slab ballastless track in subgrade frost heaving zone[J]. Journal of Beijing Jiaotong University, 2017, 41(1): 7-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201701002.htm [19] 宋宏芳, 刘晓贺, 李佰林. 季节性冻土区高速铁路新型防冻胀路基力学特性研究[J]. 铁道学报, 2018, 40(11): 98-104. doi: 10.3969/j.issn.1001-8360.2018.11.014SONG Hong-fang, LIU Xiao-he, LI Bai-lin. Study on new anti-frost heaving filling material and structure mechanical properties of high-speed railway subgrade in seasonal frozen soil region[J]. Journal of the China Railway Society, 2018, 40(11): 98-104. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.11.014 [20] 闫斌, 刘施, 戴公连, 等. 我国典型地区无砟轨道非线性温度梯度及温度荷载模式[J]. 铁道学报, 2016, 38(8): 81-86. doi: 10.3969/j.issn.1001-8360.2016.08.012YAN Bin, LIU Shi, DAI Gong-lian, et al. Vertical nonlinear temperature distribution and temperature mode of unballasted track in typical areas of China[J]. Journal of the China Railway Society, 2016, 38(8): 81-86. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.08.012 [21] 粟淼, 朱琦治, 戴公连, 等. 考虑界面初始黏结缺陷的CRTS Ⅱ型板式无砟轨道温度变形[J]. 交通运输工程学报, 2020, 20(5): 73-81. doi: 10.19818/j.cnki.1671-1637.2020.05.005SU Miao, ZHU Qi-zhi, DAI Gong-lian, et al. Temperature deformation of CRTS Ⅱ slab ballastless track considering interfacial initial bond defects[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 73-81. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.005 [22] 张鹏飞, 连西妮, 桂昊, 等. 桥墩温度梯度对桥上CRTSⅡ型板式无砟轨道纵向力的影响[J]. 交通运输工程学报, 2020, 20(4): 80-90. doi: 10.19818/j.cnki.1671-1637.2020.04.006ZHANG Peng-fei, LIAN Xi-ni, GUI Hao, et al. Effect of pier temperature gradient on longitudinal force of CRTS Ⅱ slab ballastless track on bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 80-90. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.006 [23] 刘学毅, 苏成光, 向芬, 等. 无砟轨道混凝土开裂特性模型试验研究[J]. 铁道学报, 2017, 39(7): 105-110. doi: 10.3969/j.issn.1001-8360.2017.07.015LIU Xue-yi, SU Cheng-guang, XIANG Fen, et al. Model experiment on concrete cracking characteristics of ballastless track[J]. Journal of the China Railway Society, 2017, 39(7): 105-110. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.07.015 [24] 郭亮武. 严寒地区路基冻胀下车辆-无砟轨道系统的动力学行为研究[D]. 北京: 北京交通大学, 2017.GUO Liang-wu. Study on dynamic behavior of vehicle-slab track system under the subgrade frost heaving in cold region[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese) [25] QIU Wen-liang, TENG Fei, PAN Sheng-shan. Damage constitutive model of concrete under repeated load after seawater freeze-thaw cycles[J]. Construction and Building Materials, 2020, 236: 117560. doi: 10.1016/j.conbuildmat.2019.117560 [26] 何鹏飞, 马巍, 穆彦虎, 等. 冻融循环对冻土-混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报, 2020, 42(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002016.htmHE Peng-fei, MA Wei, MU Yan-hu, et al. Experiment study on effects of freeze-thaw cycles on adfreezing strength at frozen soil-concrete interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 299-307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002016.htm [27] ZENG X H, XIE Y J, DENG D H, et al. A study of the dynamic mechanical properties of CRTS Ⅰ type CA mortar[J]. Construction and Building Materials, 2016, 112: 93-99. doi: 10.1016/j.conbuildmat.2015.08.024 [28] 赵国堂, 赵磊, 张鲁顺. 基于高速铁路路基冻胀的无砟轨道受力特征[J]. 铁道工程学报, 2017(8): 53-61. doi: 10.3969/j.issn.1006-2106.2017.08.010ZHAO Guo-tang, ZHAO Lei, ZHANG Lu-shun. Mechanical characteristics of ballastless track under subgrade frost heaving in high-speed railway[J]. Journal of Railway Engineering Society, 2017(8): 53-61. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.08.010 [29] 赵国堂. 严寒地区高速铁路无砟轨道路基冻胀管理标准的研究[J]. 铁道学报, 2016, 38(3): 1-8. doi: 10.3969/j.issn.1001-8360.2016.03.001ZHAO Guo-tang. Study on management standard of frost heaving of ballastless track subgrade on high-speed railway in severe cold regions[J]. Journal of the China Railway Society, 2016, 38(3): 1-8. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.03.001 [30] 杨国涛, 高亮, 刘秀波, 等. 基于动力分析的CRTSⅢ板式无砟轨道路基冻胀控制标准研究[J]. 铁道学报, 2017, 39(10): 110-117. doi: 10.3969/j.issn.1001-8360.2017.10.015YANG Guo-tao, GAO Liang, LIU Xiu-bo, et al. Research on division standard of subgrade frost heaving for CRTS Ⅲ slab track based on dynamic analysis[J]. Journal of the China Railway Society, 2017, 39(10): 110-117. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.10.015 [31] LI Xiao-rong, HUANG Xing-qi, ZHANG Da-wei, et al. Properties of the concrete for the slab ballastless track of CRTS Ⅲ[C]//HAN Ya-fang. Materials Science Forum. Philadelphia: Trans Tech Publications, 2017: 2071-2075. [32] 李春生, 陈胜宏, 何真, 等. 冻融循环作用下混凝土结构寿命分析[J]. 武汉大学学报(工学版), 2010, 43(2): 203-207. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201002015.htmLI Chun-shen, CHEN Sheng-hong, HE Zhen, et al. Analysis of concrete structure life under freezing thawing cycle conditions[J]. Engineering Journal of Wuhan University, 2010, 43(2): 203-207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201002015.htm -