Effect of moisture absorption of adhesive and CFRP on the failure of composite material adhesive joints
-
摘要: 对胶粘剂和复合材料的影响进行解耦;采用常温环境分别对胶粘剂、碳纤维增强树脂基复合材料(CFRP)和CFRP/铝合金粘接接头进行不同时间周期的浸泡,研究了不同应力状态对粘接接头失效的影响;以准静态失效测试的失效强度和失效模式分析为主,结合傅里叶变换红外光谱仪分析、差示扫描量热法分析和扫描电子显微镜分析,分别研究胶粘剂和CFRP吸湿后的失效机理,揭示了吸湿对复合材料粘接接头失效的影响机理。分析结果表明:胶粘剂在吸湿30 d后发生了水解,失效强度下降约53.7%,失效应变约为原来的3.2倍;CFRP吸湿后表面粘附性降低,容易引起界面失效,但打磨之后能够得到改善,CFRP吸湿后纤维/基体界面力学性能降低,在正应力状态下更容易造成纤维撕裂;CFRP/铝合金粘接接头的失效强度在吸湿30 d后下降了约23%,失效断面中胶粘剂出现了韧性断裂和界面失效;通过对胶粘剂、CFRP和CFRP/铝合金粘接接头吸湿后的失效分析,发现剪应力状态下的CFRP/铝合金粘接接头失效主要受胶粘剂吸湿后的性能下降影响,其次是界面失效的影响,而正应力状态下的CFRP/铝合金粘接接头失效还受CFRP性能下降造成的纤维撕裂影响。Abstract: The effects of adhesive and composite materials were decoupled. Adhesive, carbon fiber reinforced plastic (CFRP), and CFRP/aluminum alloy adhesive joints were immersed in water at room temperature for different durations, and the effect of different stress states on the failure of adhesive joints was investigated. Analysis of the failure strength and failure mode of the quasi-static failure test was the main method, combined with the chemical analysis of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The failure mechanisms of adhesive and CFRP after moisture absorption were studied, and the effect of moisture absorption on the failure mechanism of composite material adhesive joints was revealed. Analysis results show that the adhesive is hydrolyzed after 30 d moisture absorption, the failure strength decreases by approximately 53.7%, and the failure strain is approximately 3.2 times of the adhesive without moisture absorption. Interface failure of CFRP occurs because of the decrease in the adhesivity after moisture absorption, but it improves after polishing. The mechanical properties of the fiber/matrix interface decreases after moisture absorption, which caused the fiber tear of CFRP to be subjected to a normal stress state. The failure strength of CFRP/aluminum alloy adhesive joints decreases by approximately 23%, and ductile fracture and interface failure of the fracture surface of the adhesive occurs after moisture absorption for 30 d. Through the failure analysis of adhesive, CFRP, and CFRP/aluminum alloy adhesive joints after moisture absorption, it's determined that the failure of CFRP/aluminum alloy adhesive joints under shear stress is mainly affected by the performance reduction of the adhesive after moisture absorption, and the interface failure is the secondary cause. The failure of CFRP/aluminum alloy adhesive joints under normal stress is also influenced by the fiber tear of the CFRP owing to the performance reduction. 3 tabs, 20 figs, 30 refs.
-
Key words:
- automotive engineering /
- adhesive /
- CFRP /
- adhesive joint /
- moisture absorption /
- failure /
- decouple
-
表 1 胶粘剂材料属性
Table 1. Material properties of adhesive
材料 杨氏模量/MPa 剪切模量/MPa 泊松比 AralditeⓇ 2015 1 850 560 0.33 表 2 铝合金材料属性
Table 2. Material properties of aluminium alloy
材料 密度/(kg·m-3) 泊松比 杨氏模量/MPa 6005A 2 730 0.33 71 000 表 3 CFRP材料属性
Table 3. Material properties of CFRP
类型 横向弹性模量/GPa 纵向弹性模量/GPa 剪切模量/GPa 泊松比 单向 125±12 10±2 7±0.6 0.07 斜纹 55±5 55±5 4±0.5 0.14 -
[1] TAUB A I, LUO A A. Advanced lightweight materials and manufacturing processes for automotive applications[J]. MRS Bulletin, 2015, 40(12): 1045-1054. doi: 10.1557/mrs.2015.268 [2] 李永兵, 李亚庭, 楼铭, 等. 轿车车身轻量化及其对连接技术的挑战[J]. 机械工程学报, 2012, 48(18): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201218009.htmLI Yong-bing, LI Ya-ting, LOU Ming, et al. Light weighting of car body and its challenges to joining technologies[J]. Chinese Journal of Mechanical Engineering, 2012, 48(18): 44-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201218009.htm [3] ZANG Meng, HU Ye-fa, ZHANG Jin-guang, et al. Crashworthiness of CFRP/aluminum alloy hybrid tubes under quasi-static axial crushing[J]. Journal of Materials Research and Technology, 2020, 9(4): 7740-7753. doi: 10.1016/j.jmrt.2020.05.046 [4] SAKUNDARINI N, TAHA Z, ABDUL-RASHID S H, et al. Optimal multi/material selection for lightweight design of automotive body assembly incorporating recyclability[J]. Materials and Design, 2013, 50(17): 846-857. [5] 崔岸, 张晗, 于多年, 等. 基于PSI方法的多材料车身部件选材研究[J]. 汽车工程, 2018, 40(2): 239-244, 233. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201802019.htmCUI An, ZHANG Han, YU Duo-nian, et al. A study on material selection for multi-material autobody components based on PSI method[J]. Automotive Engineering, 2018, 40(2): 239-244, 233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201802019.htm [6] JEEVI G, NAYAK S K, ABDUL KADER M. Review on adhesive joints and their application in hybrid composite structures[J]. Journal of Adhesion Science and Technology, 2019, 33(14): 1497-1520. doi: 10.1080/01694243.2018.1543528 [7] BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72: 30-42. doi: 10.1016/j.ijadhadh.2016.10.010 [8] JEEVI G, NAYAK S K, ABDUL KADER M. Review on adhesive joints and their application in hybrid composite structures[J]. Journal of Adhesion Science and Technology, 2019, 33(14): 1497-1520. doi: 10.1080/01694243.2018.1543528 [9] JIANG X, KOLSTEIN H, BIJLAARD F, et al. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: moisture diffusion characteristics[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57: 49-58. doi: 10.1016/j.compositesa.2013.11.002 [10] VIANA G, COSTA M, BANEA M, et al. A review on the temperature and moisture degradation of adhesive joints[J]. Journal of Materials: Design and Applications, 2017, 231(5): 488-501. [11] 秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D]. 长春: 吉林大学, 2018.QIN Guo-feng. Effects of temperature and humidity aging on the static failure of adhesively bonded CFRP/aluminium alloy joints for automotive applications[D]. Changchun: Jilin University, 2018. (in Chinese) [12] ZHOU J, LUCAS J P. Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy[J]. Polymer, 1999, 40(20): 5505-5512. doi: 10.1016/S0032-3861(98)00790-3 [13] AMELI A, DATLA N V, PAPINI M, et al. Hygrothermal properties of highly toughened epoxy adhesives[J]. The Journal of Adhesion, 2010, 86(7): 698-725. doi: 10.1080/00218464.2010.482405 [14] BANEA M D, DA SILVA L F M. Adhesively bonded joints in composite materials: an overview[J]. Journal of Materials: Design and Applications, 2009, 223(1): 1-18. [15] 秦国锋, 那景新. 复合材料胶接接头温度-湿度-载荷老化机理研究概述[J]. 中国胶粘剂, 2020, 29(3): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ202003013.htmQIN Guo-feng, NA Jing-xin. Research on temperature-humidity-load aging mechanism of composite bonded joint[J]. China Adhesives, 2020, 29(3): 57-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ202003013.htm [16] LIU Shu-feng, CHENG Xiao-quan, ZHANG Qian, et al. An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates[J]. Composites Part B: Engineering, 2016, 91: 431-440. doi: 10.1016/j.compositesb.2016.01.051 [17] 牛一凡, 李璋琪, 朱晓峰. 全湿热场下碳纤维/环氧树脂复合材料弯曲性能及寿命预测[J]. 复合材料学报, 2020, 37(1): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202001015.htmNIU Yi-fan, LI Zhang-qi, ZHU Xiao-feng. Flexural properties and life-time estimation of carbon fiber/epoxy composite under hygrothermal conditions[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 104-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202001015.htm [18] ASHCROFT IA, DIGBY R P, SHAW S J. A comparison of laboratory-conditioned and naturally-weathered bonded joints[J]. The Journal of Adhesion, 2001, 75(2): 175-201. doi: 10.1080/00218460108029600 [19] MARIAM M, AFENDI M, MAJID M S A, et al. Influence of hydrothermal ageing on the mechanical properties of an adhesively bonded joint with different adherends[J]. Composites Part B: Engineering, 2019, 165: 572-585. doi: 10.1016/j.compositesb.2019.02.032 [20] SOYKOK I F. Degradation of single lap adhesively bonded composite joints due to hot water ageing[J]. The Journal of Adhesion, 2017, 93(5): 357-374. doi: 10.1080/00218464.2015.1076340 [21] JIANG X, QIANG X, KOLSTEIN M H, et al. Experimental investigation on mechanical behaviour of FRP-to-steel adhesively-bonded joint under combined loading—Part 2: after hygrothermal ageing[J]. Composite Structures, 2015, 125: 687-697. doi: 10.1016/j.compstruct.2014.12.040 [22] 王跃, 赵书平, 羊军, 等. "湿热"老化对复合材料胶补金属结构力学特性的影响[J]. 航空材料学报, 2019, 39(4): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201904014.htmWANG Yue, ZHAO Shu-ping, YANG Jun, et al. Influences of hydrothermal aging on cracked metallic structure with composite patch[J]. Journal of Aeronautical Materials, 2019, 39(4): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201904014.htm [23] 那景新, 谭伟, 慕文龙, 等. 湿热老化对BFRP粘接接头横向冲击力学性能的影响[J]. 交通运输工程学报, 2020, 20(4): 134-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004014.htmNA Jing-xin, TAN Wei, MU Wen-long, et al. Effect of hygrothermal aging on transverse impact mechanical properties of BFRP adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 134-144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004014.htm [24] FERNANDES T A B, CAMPILHO R D S G, BANEA M D, et al. Adhesive selection for single lap bonded joints: experimentation and advanced techniques for strength prediction[J]. The Journal of Adhesion, 2015, 91(10/11): 841-862. [25] HASHEMINIA S M, PARK B C, CHUN H J, et al. Failure mechanism of bonded joints with similar and dissimilar material[J]. Composites Part B: Engineering, 2019, 161: 702-709. doi: 10.1016/j.compositesb.2018.11.016 [26] CAMPILHO R D S G, BANEA M D, NETO J A B P, et al. Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations[J]. Journal of Adhesion, 2012, 88(4-6): 513-533. doi: 10.1080/00218464.2012.660834 [27] QIN Guo-feng, NA Jing-xin, TAN Wei, et al. Failure prediction of adhesively bonded CFRP-aluminum alloy joints using cohesive zone model with consideration of temperature effect[J]. The Journal of Adhesion, 2019, 95(8): 723-746. doi: 10.1080/00218464.2018.1440212 [28] LIN Y C, CHEN X, ZHANG H J, et al. Effects of hygrothermal aging on epoxy-based anisotropic conductive film[J]. Materials Letters, 2006, 60(24): 2958-2963. doi: 10.1016/j.matlet.2006.02.024 [29] XIAO G Z, SHANAHAN M E R. Irreversible effects of hygrothermal aging on DGEBA/DDA epoxy resin[J]. Journal of Applied Polymer Science, 1998, 69(2): 363-369. doi: 10.1002/(SICI)1097-4628(19980711)69:2<363::AID-APP18>3.0.CO;2-X [30] BARBOSA A P C, FULCO A P P, GUERRA E S S, et al. Accelerated aging effects on carbon fiber/epoxy composites[J]. Composites Part B: Engineering, 2017, 110: 298-306. doi: 10.1016/j.compositesb.2016.11.004 -