Simulation test of underwater vehicle shafting based on particle damping in longitudinal vibration suppression
-
摘要: 在简谐激励条件下,应用轴系颗粒阻尼纵振抑制模拟试验装置研究了旋转工况下的颗粒阻尼减振比;探讨了单腔体多颗粒和多腔体多颗粒时的轴系模拟系统加速度变化,讨论了颗粒的材料、粒径、质量填充比、腔体数量、转速、激励频率与位移等参数对系统减振比的影响规律。研究结果表明:在单腔体多颗粒条件下,填充有铜、钢、橡胶包钢颗粒的系统减振比处于7.83%~8.91%,橡胶颗粒的系统减振比接近于0;铜、钢、橡胶包钢颗粒有明显的抑振效果,颗粒的材料密度和阻尼比越大,抑振效果越好;当颗粒质量填充比为15%时,系统减振比最高为13.77%,但当质量填充比超过15%时,减振比有所降低,故质量填充比一般应根据实际情况控制在15%左右;粒径、转速、激励频率与位移幅值的变化对系统减振比的影响分别为1.76%~8.68%、6.77%~12.50%、4.41%~10.12%与2.19%~7.05%;在多腔体多颗粒工况下,当颗粒总质量填充比和转速一定时,腔体数量对系统减振比有明显影响;当腔体数量为3时,转速为100 r·min-1和质量填充比为25%的最佳系统减振比为22.5%;在多腔体多粒径颗粒工况下,当总质量填充比为10%,转速为50~150 r·min-1的系统减振比波动不大,平均为14.18%,这表明多腔体多粒径组合对转速不十分敏感,具有较好的减振效果,可拓宽转速使用范围。Abstract: Under the condition of simple harmonic excitation, a simulation test device of shafting longitudinal vibration suppression based on the particle damping was used to investigate the vibration reduction ratio of particle damping in a rotating condition. The acceleration variations of shafting simulation system for single- and multiple-cavity particle dampers were explored, and the parameters influencing the vibration reduction ratio of the system, such as material, size and filling ratio of particle, cavity number, rotating speed, frequency, and amplitude of excitation, were examined. Research results show that when there are multiple particles in a single cavity, the vibration reduction ratio of a system filled with copper, steel, and rubber-coated steel particles is between 7.83% and 8.91%, and that of a system filled with rubber particles is close to zero. This indicates that copper, steel, and rubber-coated steel particles have an obvious suppression effect, and the higher the material density and damping ratio of the particles, the better the damping effect. When the particle mass filling ratio is 15%, the maximum vibration reduction ratio of the system is 13.77%. However, when the mass filling ratio exceeds 15%, the vibration damping ratio of the system decreases. Therefore, the mass filling ratio should be controlled at approximately 15% according to the actual situation. The influences of particle size, rotating speed, excitation frequency, and displacement amplitude on the vibration reduction ratio of the system are 1.76%-8.68%, 6.77%-12.50%, 4.41%-10.12%, and 2.19%-7.05%, respectively. Under a multicavity and multiparticle condition, when the total mass filling ratio of the particles and the rotating speed are constant, the cavity number has a significant impact on the vibration reduction ratio of the system. When the cavity number is 3, the best vibration reduction ratio of the system is 22.5% under a rotating speed of 100 r·min-1 and a mass filling ratio of 25%. Under multicavity and multiple particle sizes, when the total mass filling ratio is 10% and the rotating speed is 50-150 r·min-1, the vibration reduction ratio of the system fluctuates little, with an average of 14.18%. This shows that the combined multicavity and multiple-particle-size system is not very sensitive to the rotating speed, and it has a better vibration reduction effect. As a result, the range of the rotating speed can be widened. 14 tabs, 18 figs, 30 refs.
-
表 1 不同材料颗粒的恢复系数和阻尼比
Table 1. Particle recovery coefficients and damping ratios of different materials
参数 钢 铜 橡胶 橡胶包钢 e 0.669 0.615 0.711 0.691 ξ 0.13 0.15 0.11 0.12 表 2 无颗粒阻尼器系统的固有频率
Table 2. Natural frequencies of particle-free damper system
Hz 频率 1 2 3 4 5 6 fn 211.3 493.0 556.4 706.5 856.8 1 411.6 表 3 不同材料的减振比
Table 3. Vibration reduction ratios of different materials
% 减振比 钢 铜 橡胶 橡胶包钢 λ 8.64 8.91 0 7.83 表 4 不同粒径的减振比
Table 4. Vibration reduction ratios of different particle sizes
A/mm R/mm 2 3 4 5 1.0 5.50 8.39 2.60 3.57 2.0 1.76 4.71 3.53 4.71 2.5 4.51 7.79 5.74 7.79 3.0 6.94 8.68 4.51 7.29 Σ 18.71 29.57 16.38 23.36 表 5 不同颗粒质量填充比下的减振比
Table 5. Vibration reduction ratios of different particle mass filling ratios
% δ 5 10 15 20 λ 5.55 8.62 13.77 11.13 表 6 不同激励频率下的减振比
Table 6. Vibration reduction ratios of different excitation frequencies
f/Hz 3 5 10 λ/% 4.41 10.12 8.13 表 7 不同激励位移幅值下的减振比
Table 7. Vibration reduction ratios of different excitation displacement amplitudes
A/mm 1 2 3 λ/% 3.38 2.19 7.05 表 8 不同转速下的减振比
Table 8. Vibration reduction ratios at different rotating speeds
n/(r·min-1) 50 80 100 120 150 λ/% 9.41 12.50 6.77 6.54 7.94 表 9 两个腔体系统的减振比
Table 9. Vibration reduction ratios of 2 cavity system
n/(r·min-1) δ/% 10 15 20 25 50 2.86 3.89 4.93 6.30 80 6.54 4.90 7.52 9.80 100 4.25 3.56 2.52 3.91 120 6.86 7.81 9.09 12.92 150 8.89 6.06 10.15 14.54 Σ 29.40 26.22 34.21 47.47 表 10 三个腔体系统的减振比
Table 10. Vibration reduction ratio of three 3 cavity system
n/(r·min-1) δ/% 10 15 20 25 50 9.20 11.98 17.04 19.97 80 4.56 11.11 14.61 17.94 100 8.54 14.79 18.37 22.50 120 2.25 10.75 14.88 21.06 150 3.33 9.63 13.97 17.97 Σ 27.88 58.26 78.87 99.44 表 11 四个腔体系统的减振比
Table 11. Vibration reduction ratios of 4 cavity system
n/(r·min-1) δ/% 10 15 20 25 50 6.32 11.78 13.79 18.67 80 4.27 12.53 13.10 17.09 100 9.64 14.87 15.97 20.66 120 3.65 9.55 15.44 20.22 150 3.33 9.16 13.33 20.27 Σ 27.21 57.89 71.63 96.91 表 12 两个腔体与2种粒径颗粒组合的系统减振比
Table 12. Vibration reduction ratios of combined system of 2 cavities and 2 kinds of particle size
n/(r·min-1) R/mm (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5) 50 6.17 7.51 8.46 12.40 8.71 7.15 80 14.07 13.22 14.90 19.70 16.52 8.40 100 17.46 17.57 16.87 19.68 17.67 8.96 120 16.09 17.33 17.89 20.85 6.73 13.26 150 15.60 15.65 12.07 16.60 13.89 9.82 Σ 66.39 71.28 70.19 89.23 63.52 47.59 表 13 三个腔体与3种粒径颗粒组合的系统减振比
Table 13. Vibration reduction ratios of combined system of 3 cavities and 3 kinds of particle size
n/(r·min-1) R/mm (2, 3, 4) (2, 3, 5) (2, 4, 5) (3, 4, 5) 50 6.17 7.10 8.63 6.76 80 11.70 12.93 12.93 12.74 100 10.78 13.01 13.03 12.79 120 11.97 13.80 12.43 12.94 150 11.39 13.32 13.37 13.21 Σ 52.01 60.16 60.39 58.44 表 14 四个腔体与4种粒径颗粒组合的系统减振比
Table 14. Vibration reduction ratios of combined system of 4 cavities and 4 kinds of particle size
n/(r·min-1) R/mm (2, 3, 4, 5) 50 11.45 80 15.01 100 13.89 120 15.23 150 13.34 -
[1] 闫维明, 张向东, 黄韵文, 等. 基于颗粒阻尼技术的结构减振控制[J]. 北京工业大学学报, 2012, 38(9): 1316-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201209009.htmYAN Wei-ming, ZHANG Xiang-dong, HUANG Yun-wen, et al. Structure vibration control based on particle damping technology[J]. Journal of Beijing University of Technology, 2012, 38(9): 1316-1320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201209009.htm [2] FRIEND R D, KINRA V K. Particle impacting damping[J]. Journal of Sound and Vibration, 2000, 233(1): 93-118. doi: 10.1006/jsvi.1999.2795 [3] DENG Lin-wei, CHEN Zhao-bo, WANG Lin-yu, et al. Analysis of wheel sound radiation characteristics based on particle damping[J]. Noise and Vibration Control, 2019, 36(2): 53-56. (in Chinese) [4] 胡溧, 杨驰杰, 杨启梁, 等. 颗粒阻尼影响封闭空腔目标场点声压的试验研究[J]. 机械科学与技术, 2017, 36(2): 319-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201702027.htmHU Li, YANG Chi-jie, YANG Qi-liang, et al. Experimental study on acoustics of target point in enclosed cavity affected by particle damping[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(2): 319-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201702027.htm [5] MENG Xian-zhi, WANG Zhi-jie, YAN Xian-bin. Experimental research on particle damper with viscoelastic coating[J]. Advances in Mechanical Design, 2018, 55: 889-897. [6] DJEMAL F, CHAARI R, GAFSI W, et al. Passive vibration suppression using ball impact damper absorber[J]. Applied Acoustics, 2019, 147: 72-76 doi: 10.1016/j.apacoust.2017.09.011 [7] MAO Kuan-min, WANG M Y, XU Zhi-wei, et al. Simulation and characterization of particle damping in transient vibrations[J]. Journal of Vibration and Acoustics, 2004, 126(2): 202-211. doi: 10.1115/1.1687401 [8] 杜妍辰, 张铭命. 带颗粒减振剂的碰撞阻尼的理论与实验[J]. 航空动力学报, 2012, 27(4): 789-794. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201204010.htmDU Yan-chen, ZHANG Ming-ming. Theoretical and experimental with fine particles research on impact damping as damping agent[J]. Journal of Aerospace Power, 2012, 27(4): 789-794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201204010.htm [9] PAPALOU A, MASRI S F. Response of impact dampers with granular materials under random excitation[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(3): 253-267. doi: 10.1002/(SICI)1096-9845(199603)25:3<253::AID-EQE553>3.0.CO;2-4 [10] LI K, DARBY A P. Experiments on the effect of an impact damper on a multiple-degree-of-freedom system[J]. Journal of Vibration and Control, 2006, 12(5): 445-464. doi: 10.1177/1077546306063504 [11] LIU W, TOMLINSON G R, RONGONG J A. The dynamic characterization of disk geometry particle dampers[J]. Journal of Sound and Vibration, 2005, 280(3/4/5): 849-861. [12] RONGONG J A, TOMLINSON G R. Amplitude dependent behavior in the application of particle dampers to vibrating structures[C]//AIAA. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. New York: AIAA, 2005: 1-9. [13] DARABI B, RONGONG J A. Polymeric particle dampers under steady-state vertical vibrations[J]. Journal of Sound and Vibration, 2012, 331(14): 3304-3316. doi: 10.1016/j.jsv.2012.03.005 [14] 任德新, 张大义, 何易峰, 等. 带颗粒型金属橡胶夹层阻尼结构的振动响应研究[J]. 推进技术, 2015, 36(11): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201501018.htmREN De-xin, ZHANG Da-yi, HE Yi-feng, et al. Vibration response investigation on structures with particle metal rubber damper fillings[J]. Journal of Propulsion Technology, 2015, 36(11): 124-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201501018.htm [15] 张奎, 闫维明, 王瑾, 等. 简谐波作用下颗粒阻尼器性能试验研究[J]. 工业建筑, 2017, 47(9): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201709016.htmZHANG Kui, YANG Wei-ming, WANG Jin, et al. Experimental research on the performance of particle dampers under harmonic excitation[J]. Industrial Construction, 2017, 47(9): 75-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201709016.htm [16] 张海东, 洪永明, 杜杰. 颗粒阻尼器冲击试验研究[J]. 兵工自动化, 2016, 35(1): 8-11. doi: 10.7690/bgzdh.2016.01.003ZHANG Hai-dong, HONG Yong-ming, DU Jie. Impact test on the granular damper[J]. Ordnance Industry Automation, 2016, 35(1): 8-11. (in Chinese) doi: 10.7690/bgzdh.2016.01.003 [17] 闫维明, 王瑾, 许维炳, 等. 连接刚度对调频型颗粒阻尼器减震控制效果影响研究[J]. 振动与冲击, 2018, 37(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201803002.htmYAN Wei-ming, WANG Jin, XU Wei-bing, et al. Influences of connected rigidity on vibration control effect of tuned particle dampers[J]. Journal of Vibration and Shock, 2018, 37(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201803002.htm [18] 王瑾, 闫维明, 许维炳, 等. 微细耗能颗粒对调频型颗粒阻尼器减震效果影响研究[J]. 振动与冲击, 2017, 36(13): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201713011.htmWANG Jin, YAN Wei-ming, XU Wei-bing, et al. Influences of fine energy-dissipating particles on vibration reduction effects of tuned particle dampers[J]. Journal of Vibration and Shock, 2017, 36(13): 60-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201713011.htm [19] 郭阳阳, 杨啟梁, 胡溧, 等. 一种带活塞的颗粒阻尼器阻尼特性试验研究[J]. 科技通报, 2016, 32(8): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201608003.htmGUO Yang-yang, YANG Qi-liang, HU Li, et al. Experimental investigation of damping properties of the particle dampers with piston[J]. Bulletin of Science and Technology, 2016, 32(8): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201608003.htm [20] 胡溧, 杨驰杰, 杨啟梁, 等. 周期颗粒阻尼复合板结构的带隙特性研究[J]. 振动与冲击, 2017, 36(3): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201703013.htmHU Li, YANG Chi-jie, YANG Qi-liang, et al. Band gap features of a composite slab structure with periodic particle damping[J]. Journal of Vibration and Shock, 2017, 36(3): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201703013.htm [21] FRIEND R D, KINRA V K. Particle impact damping[J]. Journal of Sound and Vibration, 2000, 233(1): 93-118. doi: 10.1006/jsvi.1999.2795 [22] MARWA M, STÉPHANE J, MOHAMED S A, et al. Experimental and analytical analysis of particle damping[C]//Springer. International Conference Design and Modeling of Mechanical Systems. Berlin: Springer, 2017: 483-494. [23] HU Li, HUANG Qi-bai, LIU Zhan-xin. A non-obstructive particle damping model of DEM[J]. International Journal of Mechanics and Materials in Design, 2008, 4: 45-51. doi: 10.1007/s10999-007-9053-z [24] SATHISHKUMAR B, MOHANASUNDARAM K M, SENTHIL KUMAR M. Impact of particle damping parameters on surface roughness of bored surface[J]. Arabian Journal for Science and Engineering, 2014, 39(10): 7327-7334. doi: 10.1007/s13369-014-1209-1 [25] ZHANG Kai, CHEN Tian-ning, WANG Xian-peng, et al. Motion mode of the optimal damping particle in particle dampers[J]. Journal of Mechanical Science and Technology, 2016, 30(4): 1527-1531. doi: 10.1007/s12206-016-0305-4 [26] WANG Yan-rong, LIU Bin, TIAN Ai-mei, et al. Experimental and numerical investigations on the performance of particle dampers attached to a primary structure undergoing free vibration in the horizontal and vertical directions[J]. Journal of Sound and Vibration, 2016, 371: 35-55 doi: 10.1016/j.jsv.2016.01.056 [27] 胡溧, 陶玉勇, 杨啟梁, 等. 颗粒阻尼双层隔振系统阻尼特性研究[J]. 科技通报, 2019, 35(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201901004.htmHU Li, TAO Yu-yong, YANG Qi-liang, et al. Experimental research on particle damping double layer[J]. Bulletin of Science and Technology, 2019, 35(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201901004.htm [28] KURIYAMA T, SAEKI M. Investigation of dynamic characteristics of rolling particle dampers[J]. Journal of Vibration and Control, 2021, 27(5): 2243-2252. [29] 闫维明, 王宝顺, 黄绪宏. 颗粒阻尼器的研究进展及其在土木工程中的应用展望[J]. 土木工程学报, 2020, 53(5): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202005003.htmYAN Wei-ming, WANG Bao-shun, HUANG Xu-hong. Research progress of particle damper and its application prospect in civil engineering[J]. China Civil Engineering Journal, 2020, 53(5): 32-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202005003.htm [30] 杨俊. 基于多腔体多颗粒阻尼的水下航行器轴系纵振抑制机理及试验研究[D]. 武汉: 武汉理工大学, 2020.YUN Jun. Longitudinal vibration suppression mechanism and experiment research of underwater vehicle shafting based on multi-cavity and multi-particle damping[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese) -