Summary of dynamics research on traction power transmission system of rail transits
-
摘要: 为了提升轨道车辆牵引动力传动系统的动态服役性能,保障服役可靠性与安全性,分析了牵引动力传动系统的动力学研究现状与发展趋势,研究了齿轮动力学、滚动轴承动力学和机电耦合效应的分析理论与研究方法,探讨了其未来的研究重点和发展方向。研究结果表明:在牵引动力传动系统动力学研究中,主要采用集总参数法进行耦合动力学建模,重点考虑齿轮时变啮合刚度和轮轨激扰等动态激励,分析齿轮传动与车辆系统的耦合振动特性;在轨道机车车辆滚动轴承动力学研究中,主要分析了轴箱轴承、电机轴承、电机抱轴承、齿轮箱轴承4种不同滚动轴承的动态特性;正在逐步深入开展基于转子动力学和机电耦合效应的机车牵引电机控制策略、谐波转矩抑制、故障激励机理及特征的研究;牵引电机、齿轮传动、轴承等关键部件的研究相对独立,未充分考虑彼此间的动态耦合关系,尚未揭示动力学相互作用机制;在前期研究基础上,今后重点关注的主要研究方向是进一步考虑整车服役环境影响,深入研究牵引动力传动系统关键零部件的动态特性、载荷识别、疲劳寿命、故障机理、故障诊断、性能演变规律与状态监测,探索新型牵引动力传动系统动力学特性。Abstract: To promote the dynamic service performance of railway vehicle traction power transmission system and ensure the service reliability and safety, the current situation and development trend of dynamics research of traction power transmission system were analyzed, the analysis theory and research methods of gear dynamics, rolling bearing dynamics and electromechanical coupling effects were studied, and the future research focus and developing directions were discussed. Research results indicate that in the dynamics research of traction power transmission system, the lumped parameter method is mainly used for the coupling dynamics modeling, the dynamic excitations, such as gear time-varying meshing stiffness and wheel-rail excitation, are focused, and the coupling vibration characteristics between gear transmission and vehicle system are analyzed. In dynamics research of rolling bearing of railway vehicle, the dynamic characteristics of four rolling bearings, including axle box bearing, motor bearing, axle suspension bearing, and gearbox bearing, are analyzed. The research on locomotive traction motor's control strategy, harmonic torque suppression, and fault excitation mechanism and characteristics based on rotor dynamics and electromechanical coupling effect is gradually conducted. The studies of key components, such as traction motor, gear transmission, bearing, and other aspects are relatively independent, the dynamic coupling relationship among them has not been fully considered, and the dynamic interaction mechanism has not yet been revealed. Based on the previous research, the main research directions of the future are to further consider the impact of railway vehicle service environment, deeply study the dynamic characteristics, load identification, fatigue life, fault mechanism, fault diagnosis, performance evolution law and state monitoring of key parts of traction power transmission system, and explore the dynamic characteristics of new traction power transmission system. 4 tabs, 8 figs, 122 refs.
-
表 1 部件供应商
Table 1. Component suppliers
部件/系统 供应商 复兴号 和谐号 车轮 智奇、BVV、太原重工、马鞍山钢铁 智奇、BVV、CAF、新日铁 轴 智奇、BVV、太原重工、CAF、晋西车轴 智奇、BVV、CAF 轴承 Timken、舍弗勒、明治、斯凯孚 Timken、舍弗勒、明治、斯凯孚 齿轮箱 戚墅堰、重庆凯瑞、采埃孚 福伊特、明治、采埃孚、戚墅堰 牵引电机 中车永济电机 中车永济电机 表 2 轨道交通牵引动力传动系统齿轮动力学研究总结
Table 2. Dynamics research summary on gears in traction power transmission system
研究主题 研究方法 研究模型 文献来源 内部应力分析 有限元法 齿轮刚柔耦合接触动力学模型 [18] 齿轮副有限元模型 [19] 耦合振动 集总参数法、解析法 考虑齿轮传动的机车-轨道耦合动力学模型 [17]、[24]~[30] 集总参数法、有限元法 考虑齿轮传动的高速列车多体动力学模型 [31]~[32] 考虑齿轮传动的刚柔耦合动力学模型 [33]~[34] 故障特征 集总参数法、解析法 考虑齿轮传动的机车空间动力学模型 [35]~[40] 集总参数法、有限元法 考虑齿轮传动的高速列车-轨道耦合动力学模型 [16]、[42] 有限元法 机车轴承-齿轮-轮对耦合系统动力学模型 [41] 弯扭特性 集总参数法 考虑齿轮-转子-电机轴承的机车动力学模型 [43] 机车齿轮传动弯扭耦合非线性动力学模型 [20] 混沌特性 集总参数法 齿轮扭转振动模型 [21] 机车齿轮传动系统动力学模型 [20]~[22] 高速列车齿轮传动系统动力学模型 [23] 寿命预测 有限元法 齿轮副有限元模型 [44] 集总参数法、有限元法 考虑齿轮传动的刚柔耦合高速列车动力学模型 [45] 表 3 牵引动力传动系统滚动轴承动力学研究总结
Table 3. Dynamics research summary of rolling bearings in traction power transmission system
研究对象 研究主题 研究方法 研究模型 文献来源 轴箱轴承 轴承内部应力分析 有限元法 滚动轴承有限元模型 [47]~[51] 虚拟样机 滚动轴承虚拟模型 [55] 集总参数法、有限元法 车轮-轨道耦合动力学模型、滚动体-保持架有限元模型 [56] 耦合振动分析 集总参数法 车辆-轨道刚柔耦合动力学模型 [59] 车辆-轨道耦合动力学模型 [54], [60]~[63] 故障特征分析 集总参数法 车辆系统动力学模型 [64]~[67] 有限元法 滚动轴承有限元模型 [47]、[52] 温度场分析 有限元法 滚动轴承有限元模型 [18] 解析法 车辆-轨道耦合动力学模型 [61] 混沌特性分析 集总参数法 轴承-转子动力学模型 [57]~[58] 打滑特性 集总参数法 轴承打滑动力学模型 [53] 寿命预测 试验法 [63] 电机轴承 耦合振动分析 集总参数法 轴承-转子动力学模型 [68]~[70] 车辆系统动力学模型 [71]~[75] 温度场分析 集总参数法、有限元法 车辆系统动力学模型、滚动轴承有限元模型 [77] 动态响应特性 有限元法 滚动轴承有限元模型 [76] 寿命预测、可靠性分析 解析法 滚动轴承静力学分析模型 [71] 弯扭特性分析 集总参数法 齿轮-转子-轴承动力学模型 [70] 抱轴承 载荷分析 解析法 [78] 寿命预测 集总参数法 车辆系统动力学模型 [79] 表 4 驱动系统电机研究总结
Table 4. Research summary on driving system motor
研究主题 研究分类 研究方法或模型 研究目的 文献来源 牵引电机动力学建模 转子动力学系统建模 转子、转子-轴承耦合模型 分析电机转子动力学响应、周期性响应、碰摩现象 [68]、[69]、[80]~[83] 考虑牵引传动系统的车辆-轨道耦合动力学模型 分析转子振动对车辆系统的影响;分析齿轮啮合作用和机车振动环境下的电机系统动力学响应 [73]、[84] 电机及机电耦合分析 电机分析 有限元方法 利用有限元分析、步进法对异步电机进行场分析,并进行暂态与瞬态的参数计算 [85]~[88] 机电耦合分析 机电转子模型、Jeffcott转子模型 研究机电相互作用所引起的转子动态响应,考虑非线性振动 [90]~[92] 机电系统分析动力学、变分法原理 研究高速电主轴系统的机电耦合动力学性能 [93] 机电耦合振动模型 探究高速列车驱动系统机电耦合振动特性及抑制方法 [94]~[98] 牵引电机控制方法 矢量控制 转子磁链定向控制 证明该方法运用在轨道交通车辆牵引控制系统中的可行性 [100]、[101] 定子磁链定向控制 实现低地板车辆对轮对的导向控制 [102] 直接转矩控制 极限环控制 奠定直接转矩控制方法的基础 [103] 直接转矩控制方法 讨论该方法对电机进行控制的可行性 [104]、[105] 圆形磁链和六边形磁链 对比分析两种方法的原理,证明六边形磁链控制的简易性 [107] 牵引电机与逆变器等效模型 研究高速列车牵引及制动的动力学特性 [108] 黏着优化控制 双轴模型 利用全维状态观测器来保证黏着利用最大化 [109] 并联电机控制 [110] 谐波转矩及电机故障分析 谐波分析 等效电路、虚位移原理 进行基波及谐波转矩计算 [111]~[113] 等效电路、虚位移原理+车辆轨道耦合模型 研究谐波转矩对车辆系统动力学性能的影响 [114]~[117] 转子偏心 有限元方法 建立由转子偏心引起的不平衡磁拉力计算模型 [120]、[121] 结合数值方法和谐波分析 [122] -
[1] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.001 [2] 王宝权, 杨荣成. 高端装备行业之动车组篇——动车组需求增量不减, 复兴号开启国产新时代[R]. 深圳: 招商银行研究院, 2020.WANG Bao-quan, YANG Rong-cheng. EMU of high-end equipment industry——EMU demand increment is not reduced, Fuxing opens a new era of domestic[R]. Shenzhen: China Merchants Bank Institute, 2020. (in Chinese) [3] 周立秋. SS3型机车齿轮箱渗漏油分析与改进[J]. 电力机车与城轨车辆, 2003, 26(4): 75-76. doi: 10.3969/j.issn.1672-1187.2003.04.027ZHOU Li-qiu. Analysis and improvement of oil leakage in SS3 locomotive gearbox[J]. Electric Locomotives and Mass Transit Vehicles, 2003, 26(4): 75-76. (in Chinese) doi: 10.3969/j.issn.1672-1187.2003.04.027 [4] 李霞. SS4改进型机车牵引电机悬挂座出现裂纹的原因探讨及改进建议[J]. 机车电传动, 2004(5): 64-66. doi: 10.3969/j.issn.1000-128X.2004.05.020LI Xia. Discussion and suggestion of the cause of crack in the suspension seat of SS4 modified locomotive traction motor[J]. Electric Drive for Locomotives, 2004(5): 64-66. (in Chinese) doi: 10.3969/j.issn.1000-128X.2004.05.020 [5] 姚川伟, 王小英, 原向东, 等. SS7E机车电机安装座裂纹分析[J]. 科技创新与生产力, 2015(3): 86-87. doi: 10.3969/j.issn.1674-9146.2015.03.086YAO Chuan-wei, WANG Xiao-ying, YUAN Xiang-dong, et al. Microscopic cracks analysis on electric motor mounting seat of SS7E locomotive[J]. Sci-Tech Innovation and Productivity, 2015(3): 86-87. (in Chinese) doi: 10.3969/j.issn.1674-9146.2015.03.086 [6] 沈来荣. 提速内燃机车牵引齿轮故障分析[J]. 铁道机车车辆, 2000(1): 36-39. doi: 10.3969/j.issn.1008-7842.2000.01.013SHEN Lai-rong. Fault analysis on traction gearbox of improving speed diesel locomotive[J]. Railway Locomotive and Car, 2000(1): 36-39. (in Chinese) doi: 10.3969/j.issn.1008-7842.2000.01.013 [7] 施瑞能, 杨志荣. 准轨电机车牵引电机故障分析[J]. 中国矿业, 1999, 8(增3): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA1999S3024.htmSHI Rui-neng, YANG Zhi-rong. Fault analysis of traction motor of standard-rail electric locomotive[J]. China Mining Magazine, 1999, 8(S3): 109-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA1999S3024.htm [8] 封宇. HXD1C型机车齿轮箱漏油问题分析及维护方法[J]. 电力机车与城轨车辆, 2011, 34(3): 83-84. doi: 10.3969/j.issn.1672-1187.2011.03.029FENG Yu. Analysis and maintenance method of HXD1C locomotive gearbox oil leakage problem[J]. Electric Locomotives and Mass Transit Vehicles, 2011, 34(3): 83-84. (in Chinese) doi: 10.3969/j.issn.1672-1187.2011.03.029 [9] 朱文胜, 安中正, 尚茂, 等. HXD1型机车牵引电机转轴与齿轮轴断裂原因分析及措施[J]. 机车电传动, 2011(5): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201105026.htmZHU Wen-sheng, AN Zhong-zheng, SHANG Mao, et al. Measure and fracture failure analysis of the pulling motor revolving shaft and gear shaft of the HXD1 locomotive[J]. Electric Drive for Locomotives, 2011(5): 79-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201105026.htm [10] 陈予, 曾国新, 赵剑平, 等. HXD3C型机车牵引电机齿轮断裂原因分析和预防对策[J]. 电力机车与城轨车辆, 2012, 35(4): 83-84, 86. doi: 10.3969/j.issn.1672-1187.2012.04.026CHEN Yu, ZENG Guo-xin, ZHAO Jian-ping, et al. Cause analysis and preventive measures of HXD3C locomotive traction motor gear fracture[J]. Electric Locomotives and Mass Transit Vehicles, 2012, 35(4): 83-84, 86. (in Chinese) doi: 10.3969/j.issn.1672-1187.2012.04.026 [11] 吴勇, 安中正, 王帅, 等. HXD2型机车牵引电机驱动端轴承故障分析及措施[J]. 铁道机车车辆, 2012, 32(2): 83-84, 118. doi: 10.3969/j.issn.1008-7842.2012.02.021WU Yong, AN Zhong-zheng, WANG Shuai, et al. HXD2 locomotive traction motor drive end bearing failure analysis and measures[J]. Railway Locomotive and Car, 2012, 32(2): 83-84, 118. (in Chinese) doi: 10.3969/j.issn.1008-7842.2012.02.021 [12] 于乃术. HXD3型机车牵引电机故障的预防探讨[J]. 机车电传动, 2010(4): 77-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201004025.htmYU Nai-shu. Discussion on prevention of traction motor failure of HXD3 locomotive[J]. Electric Drive for Locomotives, 2010(4): 77-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201004025.htm [13] 李秀红, 李刚, 任家骏, 等. 高速动车组斜齿轮的齿根裂纹萌生寿命数值计算[J]. 中国机械工程, 2018, 29(9): 1017-1024. doi: 10.3969/j.issn.1004-132X.2018.09.002LI Xiu-hong, LI Gang, REN Jia-jun, et al. Numerical simulation of helical gear tooth root crack initiation life of high-speed EMUs[J]. China Mechanical Engineering, 2018, 29(9): 1017-1024. (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.09.002 [14] 刘良峰. 动车组机械传动系统轴承振动信号分析与故障诊断[D]. 北京: 北京交通大学, 2014.LIU Liang-feng. Electric multiple unit mechanical transmission bearing vibration signal analysis and fault diagnosis[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese) [15] HU Wei-gang, LIU Zhi-ming, LIU De-kun, et al. Fatigue failure analysis of high speed train gearbox housings[J]. Engineering Failure Analysis, 2017, 73: 57-71. doi: 10.1016/j.engfailanal.2016.12.008 [16] WANG Zhi-wei, YIN Zhong-hui, WANG Rui-cheng, et al. Coupled dynamic behaviour of a transmission system with gear eccentricities for a high-speed train[J]. Vehicle System Dynamics, 2021, 59(4): 613-634. doi: 10.1080/00423114.2019.1708008 [17] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. A locomotive-track coupled vertical dynamics model with gear transmissions[J]. Vehicle System Dynamics, 2017, 55(2): 244-267. doi: 10.1080/00423114.2016.1254260 [18] 邱星慧, 杨建伟, 陈忠伟. 刚柔耦合地铁齿轮传动系统振动响应分析[J]. 机械传动, 2018, 42(3): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201803019.htmQIU Xing-hui, YANG Jian-wei, CHEN Zhong-wei. Analysis of vibration response of rigid-flexible coupled subway gear transmission system[J]. Journal of Mechanical Transmission, 2018, 42(3): 85-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201803019.htm [19] 王海龙, 魏领会, 姚灿江. 高速列车齿轮箱齿轮副接触应力分析[J]. 机车电传动, 2019(1): 68-71, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901016.htmWANG Hai-long, WEI Ling-hui, YAO Can-jiang. Analysis of gear contact stress of high-speed train gearbox[J]. Electric Drive for Locomotives, 2019(1): 68-71, 97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901016.htm [20] 张捷. 机车齿轮传动系统弯扭耦合非线性动力学分析[D]. 成都: 西南交通大学, 2018.ZHANG Jie. Nonlinear dynamic analysis of bending-torsion coupled of locomotive gear transmission system[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese) [21] WANG Jun-guo, HE Guang-yue, ZHANG Jie, et al. Nonlinear dynamics analysis of the spur gear system for railway locomotive[J]. Mechanical Systems and Signal Processing, 2017, 85: 41-55. doi: 10.1016/j.ymssp.2016.08.004 [22] 王俊国, 肖遥, 杨旭峰, 等. 牵引电机扭矩激扰的机车齿轮传动系统非线性特性[J]. 中国机械工程, 2018, 29(11): 1296-1302. doi: 10.3969/j.issn.1004-132X.2018.11.007WANG Jun-guo, XIAO Yao, YANG Xu-feng, et al. Nonlinear characteristics of gear transmission systems of locomotive excited by torque fluctuation of traction motors[J]. China Mechanical Engineering, 2018, 29(11): 1296-1302. (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.11.007 [23] 魏静, 孙清朝, 孙伟, 等. 高速机车牵引齿轮传动系统动态特性及非线性因素影响研究[J]. 振动与冲击, 2012, 31(17): 38-43, 50. doi: 10.3969/j.issn.1000-3835.2012.17.007WEI Jing, SUN Qing-chao, SUN Wei, et al. Dynamic analysis and effects of nonlinear factors of a gear transmission system for high speed locomotive[J]. Journal of Vibration and Shock, 2012, 31(17): 38-43, 50. (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.17.007 [24] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions[J]. Journal of Sound and Vibration, 2017, 408: 220-233. doi: 10.1016/j.jsv.2017.07.017 [25] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. Locomotive dynamic performance under traction/braking conditions considering effect of gear transmissions[J]. Vehicle System Dynamics, 2018, 56(7): 1097-1117. doi: 10.1080/00423114.2017.1406609 [26] ZHANG Tao, CHEN Zai-gang, ZHANG Jie, et al. Effect of motor suspension parameters on dynamic characteristics of gear transmission system in a locomotive[C]//ASCE. First International Conference on Rail Transportation 2017. Reston: ASCE, 2017: 576-585. [27] ZHANG Tao, CHEN Zai-gang, ZHAI Wan-ming, et al. Establishment and validation of a locomotive-track coupled spatial dynamics model considering dynamic effect of gear transmissions[J]. Mechanical Systems and Signal Processing, 2019, 119: 328-345. doi: 10.1016/j.ymssp.2018.09.032 [28] 何春燕. 车轮不圆对机车齿轮传动系统动态特性的影响研究[D]. 成都: 西南交通大学, 2018.HE Chun-yan. The study on dynamic effect of polygonal wheel on gear transmission system of a locomotive[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese) [29] HE Chun-yan, CHEN Zai-gang, ZHAI Wan-ming, et al. A spatial dynamics model for heavy-haul electric locomotives considering the dynamic coupling effect of gear transmissions[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(9): 961-973. doi: 10.1177/0954409718823138 [30] 王自超, 陈再刚, 翟婉明, 等. 考虑齿轮传动系统的重载电力机车轴重转移研究[J]. 铁道学报, 2019, 41(10): 24-29. doi: 10.3969/j.issn.1001-8360.2019.10.004WANG Zi-chao, CHEN Zai-gang, ZHAI Wan-ming, et al. Research on axle load transfer of heavy-haul electric locomotive considering effect of gear transmission system[J]. Journal of the China Railway Society, 2019, 41(10): 24-29. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.10.004 [31] HUANG Guan-hua, ZHOU Ning, ZHANG Wei-hua. Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(8): 1899-1907. doi: 10.1177/0954409715617787 [32] WANG Zhi-wei, MEI Gui-ming, XIONG Qing, et al. Motor car-track spatial coupled dynamics model of a high-speed train with traction transmission systems[J]. Mechanism and Machine Theory, 2019, 137: 386-403. doi: 10.1016/j.mechmachtheory.2019.03.032 [33] 邓晓宇, 张卫华. 基于刚柔耦合的高速列车齿轮传动系统动态特性研究[J]. 高速铁路技术, 2016, 7(4): 50-54. doi: 10.3969/j.issn.1674-8247.2016.04.012DENG Xiao-yu, ZHANG Wei-hua. Research on the dynamic characteristics of gear transmission system of high-speed train based on the rigid-flexible coupling dynamics[J]. High Speed Railway Technology, 2016, 7(4): 50-54. (in Chinese) doi: 10.3969/j.issn.1674-8247.2016.04.012 [34] 龚道平. 重载机车驱动系统刚柔耦合动力学分析[D]. 成都: 西南交通大学, 2019.GONG Dao-ping. Rigid-flexible coupling dynamics analysis of drive system for the heavy haul locomotive[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese) [35] CHEN Zai-gang, ZHANG Jie, WANG Zi-chao, et al. Study on vibration characteristics of a locomotive with gear tooth root crack by simulation[C]//IEEE. 7th IEEE Prognostics and System Health Management Conference. New York: IEEE, 2016: 1-5. [36] LIU Xin-chang, SUN Qi, CHEN Chun-jun. Damage degree detection of cracks in a locomotive gear transmission system[J]. Shock and Vibration, 2018, 2018: 1-14. http://www.onacademic.com/detail/journal_1000042304395699_1461.html [37] JIANG Jian-zheng, CHEN Zai-gang, HE Chun-yan, et al. Fault vibration features of heavy-haul locomotive with tooth root crack in gear transmissions[C]//IEEE. 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). New York: IEEE, 2018: 113-118. [38] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. Vibration feature evolution of locomotive with tooth root crack propagation of gear transmission system[J]. Mechanical Systems and Signal Processing, 2019, 115: 29-44. doi: 10.1016/j.ymssp.2018.05.038 [39] JIANG Jian-zheng, CHEN Zai-gang, ZHAI Wan-ming, et al. Vibration characteristics of railway locomotive induced by gear tooth root crack fault under transient conditions[J]. Engineering Failure Analysis, 2020, 108: 104285. doi: 10.1016/j.engfailanal.2019.104285 [40] 陈春俊, 张振, 刘广. 轨道不平顺激扰下机车传动齿轮振动特性研究[J]. 中国测试, 2020, 46(6): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202006019.htmCHEN Chun-jun, ZHANG Zhen, LIU Guang. Research on vibration characteristics of locomotive transmission gear under track irregularity[J]. China Measurement and Test, 2020, 46(6): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202006019.htm [41] 杨柳. 基于机车传动系统动力学模型的故障机理与诊断方法研究[D]. 北京: 北京交通大学, 2019.YANG Liu. Study on fault mechanism and diagnosis method based on locomotive transmission system dynamics model[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese) [42] WANG Zhi-wei, MEI Gui-ming, ZHANG Wei-hua, et al. Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1852-1863. doi: 10.1177/0954409717752998 [43] 王燕. 机车齿轮传动系统非线性动力学特性研究[D]. 成都: 西南交通大学, 2019.WANG Yan. Research on nonlinear dynamic characteristics of locomotive gear transmission system[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese) [44] 李刚. 高速动车组齿轮箱斜齿轮副弯曲疲劳寿命仿真分析[D]. 太原: 太原理工大学, 2017.LI Gang. Bending fatigue life simulation analysis of helical gear pair of high-speed EMU gearbox[D]. Taiyuan: Taiyuan University of Technology, 2017. (in Chinese) [45] GUO Feng, WU Sheng-chuan, LIU Jian-xin, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132: 105353. doi: 10.1016/j.ijfatigue.2019.105353 [46] 谢兴会, 王金成, 潘隆. 高铁轴承关键技术基础研究[C]//中国铁道学会. 铁路车辆轮轴技术交流会论文集. 北京: 中国铁道学会, 2016: 36-41.XIE Xing-hui, WANG Jin-cheng, PAN Long. Basic research on key technology of high-speed railway bearing[C]//China Railway Society. Railway vehicle wheel and axle technology exchange proceedings. Beijing: China Railway Society, 2016: 36-41. (in Chinese) [47] 陈光东. 高速列车轴箱轴承动态特性及故障研究[D]. 大连: 大连交通大学, 2015.CHEN Guang-dong. Research on dynamic characteristics and fault analysis of the axle box roller bearing used in high-speed railway[D]. Dalian: Dalian Jiaotong University, 2015. (in Chinese) [48] 郝烨江, 李强, 郑静. 基于ABAQUS的列车轴箱轴承动力学分析[J]. 轴承, 2014(3): 10-15. doi: 10.3969/j.issn.1000-3762.2014.03.003HAO Ye-jiang, Li Qiang, ZHENG Jing. Dynamics analysis of train axle box bearings based on ABAQUS[J]. Bearing, 2014(3): 10-15. (in Chinese) doi: 10.3969/j.issn.1000-3762.2014.03.003 [49] YAN Ke, WANG Ning, ZHAI Qiang, et al. Theoretical and experimental investigation on the thermal characteristics of double-row tapered roller bearings of high speed locomotive[J]. International Journal of Heat and Mass Transfer, 2015, 84: 1119-1130. doi: 10.1016/j.ijheatmasstransfer.2014.11.057 [50] 刘德昆. 高速列车轴箱轴承疲劳寿命及可靠性研究[D]. 北京: 北京交通大学, 2017.LIU De-kun. Research on fatigue life and reliability of high-speed train axle box bearing[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese) [51] 赵永翔, 蔡慧, 敬霖. HXD2机车动力轮对的集成有限元模型[J]. 机械工程学报, 2014, 50(14): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414003.htmZHAO Yong-xiang, CAI Hui, JING Lin. Integral finite modeling for the powered wheelset of HXD2 locomotive[J]. Journal of Mechanical Engineering, 2014, 50(14): 21-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414003.htm [52] FALLAHNEZHAD K, LIU S, BRINJI O, et al. Monitoring and modelling of false brinelling for railway bearings[J]. Wear, 2019, 424: 151-164. http://www.onacademic.com/detail/journal_1000041595694399_7364.html [53] 涂文兵, 杨锦雯, 罗丫, 等. 高速列车轴箱圆柱滚子轴承启动过程的打滑动力学特性[J]. 振动与冲击, 2020, 39(10): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202010018.htmTU Wen-bing, YANG Jin-wen, LUO Ya, et al. Skidding dynamic characteristics of axle box roller bearing of high-speed trains during start-up[J]. Journal of Vibration and Shock, 2020, 39(10): 127-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202010018.htm [54] WANG Zhi-wei, SONG Yang, YIN Zhong-hui, et al. Random response analysis of axle-box bearing of a high-speed train excited by crosswinds and track irregularities[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10607-10617. doi: 10.1109/TVT.2019.2943376 [55] 刘璐, 邱明, 邹春生, 等. 游隙对铁路客车轴箱轴承性能的影响分析[J]. 现代制造工程, 2019(10): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201910035.htmLIU Lu, QIU Ming, ZOU Chun-sheng, et al. Analysis of the influence of clearance on the performance of railway passenger car axle box bearings[J]. Modern Manufacturing Engineering, 2019(10): 140-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201910035.htm [56] 黄运生, 邓四二, 张文虎, 等. 冲击载荷对铁路轴箱轴承塑料保持架动态性能影响研究[J]. 振动与冲击, 2018, 37(1): 172-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201801027.htmHUANG Yun-sheng, DENG Si-er, ZHANG Wen-hu, et al. Influence of impact loads on the dynamic characteristics of plastic cages in railway axle bearings[J]. Journal of Vibration and Shock, 2018, 37(1): 172-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201801027.htm [57] 刘永强, 王宝森, 杨绍普. 含外圈故障的高速列车轴承转子系统非线性动力学行为分析[J]. 机械工程学报, 2018, 54(8): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201808003.htmLIU Yong-qiang, WANG Bao-sen, YANG Shao-pu. Nonlinear dynamic behaviors analysis of the bearing rotor system with outer ring faults in the high-speed train[J]. Journal of Mechanical Engineering, 2018, 54(8): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201808003.htm [58] 曹青松, 朱志强, 叶征春, 等. 动车组滚动轴承非线性动力学特性分析[J]. 轴承, 2013(8): 8-11. doi: 10.3969/j.issn.1000-3762.2013.08.003CAO Qing-song, ZHU Zhi-qiang, YE Zheng-chun, et al. Analysis on nonlinear dynamic characteristics of rolling bearings for multiple unit trains[J]. Bearing, 2013(8): 8-11. (in Chinese) doi: 10.3969/j.issn.1000-3762.2013.08.003 [59] 郑静, 郑志强, 李娜, 等. 高速动车组轴箱轴承轴向游隙对轴箱体振动的影响[J]. 铁道车辆, 2020, 58(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL202004001.htmZHENG Jing, ZHENG Zhi-qiang, LI Na, et al. Effect of axial clearance of bearings in axle boxes on the vibration of axle boxes for high speed multiple units[J]. Rolling Stock, 2020, 58(4): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL202004001.htm [60] 盖利森, 张卫华. 高速列车轴箱轴承动力学分析[J]. 哈尔滨轴承, 2016, 37(1): 3-7, 13. doi: 10.3969/j.issn.1672-4852.2016.01.001GAI Li-sen, ZHANG Wei-hua. Dynamic analysis of axle box bearing of high-speed train[J]. Journal of Harbin Bearing, 2016, 37(1): 3-7, 13. (in Chinese) doi: 10.3969/j.issn.1672-4852.2016.01.001 [61] WANG Z W, CHENG Y, ALLEN P, et al. Analysis of vibration and temperature on the axle box bearing of a high-speed train[J]. Vehicle System Dynamics, 2020, 58(10): 1605-1628. doi: 10.1080/00423114.2019.1645340 [62] 查浩, 任尊松, 徐宁. 高速动车组轴箱轴承振动特性[J]. 机械工程学报, 2018, 54(16): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201816016.htmZHA Hao, REN Zun-song, XU Ning. Vibration performance of high-speed vehicles with axle box bearing[J]. Journal of Mechanical Engineering, 2018, 54(16): 144-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201816016.htm [63] 牛治慧. 高速列车轴箱系统振动特性及试验研究[D]. 长春: 吉林大学, 2019.NIU Zhi-hui. Vibration characteristics and experimental study of axle box system of high speed train[D]. Changchun: Jilin University, 2019. (in Chinese) [64] 向琴. 高速列车滚动轴承支承松动建模及其非线性动力学特性研究[D]. 南昌: 华东交通大学, 2015.XIANG Qin. Study on modeling and nonlinear dynamic characteristics of high-speed train rolling bearing with pedestal looseness[D]. Nanchang: East China Jiaotong University, 2015. (in Chinese) [65] 刘国云, 曾京, 罗仁, 等. 轴箱轴承缺陷状态下的高速车辆振动特性分析[J]. 振动与冲击, 2016, 35(9): 37-42, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201609008.htmLIU Guo-yun, ZENG Jing, LUO Ren, et al. Vibration performance of high-speed vehicles with axle box bearing defects[J]. Journal of Vibration and Shock, 2016, 35(9): 37-42, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201609008.htm [66] 刘国云, 曾京, 戴焕云, 等. 考虑轴箱轴承表面波纹度的高速车辆振动特性分析[J]. 机械工程学报, 2016, 52(14): 147-156. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201614016.htmLIU Guo-yun, ZENG Jing, DAI Huan-yun, et al. Vibration performance of high-speed vehicles under axle box bearing surface waviness[J]. Journal of Mechanical Engineering, 2016, 52(14): 147-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201614016.htm [67] 王宝森. 高速列车轴箱轴承-转子系统非线性动力学行为分析[D]. 石家庄: 石家庄铁道大学, 2018.WANG Bao-sen. Nonlinear dynamic behavior analysis of axle box bearing rotor system for high speed train[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2018. (in Chinese) [68] 白瑞松. 机车牵引电机转子碰摩非线性动力学研究[D]. 成都: 西南交通大学, 2015.BAI Rui-song. Nonlinear dynamics of locomotive traction motor with rub-impact[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese) [69] 史德龙. 机车牵引电机滚动轴承-转子系统的非线性特性研究[D]. 成都: 西南交通大学, 2016.SHI De-long. Nonlinear dynamic analysis of rotor-bearing system for locomotive traction motor[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese) [70] XIANG Ling, GAO Nan. Coupled torsion-bending dynamic analysis of gear-rotor-bearing system with eccentricity fluctuation[J]. Applied Mathematical Modelling, 2017, 50: 569-584. doi: 10.1016/j.apm.2017.06.026 [71] 胡晓君. 大功率货运机车牵引电机轴小齿轮支承方式的研究[D]. 成都: 西南交通大学, 2008.HU Xiao-jun. Research of support form of traction motor pinion in high power haul locomotive[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese) [72] LIU Yu-qing, CHEN Zai-gang, ZHAI Wan-ming, et al. Dynamic investigation of traction motor bearing in a locomotive under excitation from track random geometry irregularity[J]. International Journal of Rail Transportation, 2020, DOI: 10.1080/23248378.2020.1867658. [73] LIU Yu-qing, CHEN Zai-gang, WANG Kai-yun, et al. Dynamic modelling of traction motor bearings in locomotive-track spatially coupled dynamics system[J]. Vehicle System Dynamics, 2021, DOI: 10.1080/00423114.2021.1918728. [74] LIU Yu-qing, CHEN Zai-gang, TANG Liang, et al. Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions[J]. Mechanical Systems and Signal Processing, 2021, 150: 107257. doi: 10.1016/j.ymssp.2020.107257 [75] LIU Yu-qing, CHEN Zai-gang, LI Wei, et al. Dynamic analysis of traction motor in a locomotive considering surface waviness on races of a motor bearing[J]. Railway Engineering Science, 2021, 29(4): 379-393. doi: 10.1007/s40534-021-00246-x [76] 乔长帅, 张建安, 钟博. 高速牵引电机深沟球轴承的显式动力学分析[J]. 电机技术, 2015(3): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DJIJ201503005.htmQIAO Chang-shuai, ZHANG Jian-an, ZHONG Bo. Explicit dynamic analysis of deep-groove bearing on the high-speed traction motor[J]. Electrical Machinery Technology, 2015(3): 15-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJIJ201503005.htm [77] WANG Ting-ting, WANG Zhi-wei, SONG Dong-li, et al. Effect of track irregularities of high-speed railways on the thermal characteristics of the traction motor bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(1): 22-34. doi: 10.1177/0954409720902359 [78] 姜冬. 铁路机车牵引电动机滚动抱轴承研究[J]. 内燃机车, 1998(10): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX199810002.htmJIANG Dong. Research on rolling suspension bearing of traction motor of railway locomotive[J]. Diesel Locomotives, 1998(10): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX199810002.htm [79] 孟政, 刘志恒, 罗世辉. 牵引电机吊挂刚度对机车抱轴承寿命的影响[J]. 内燃机车, 2011(12): 11-14. doi: 10.3969/j.issn.1003-1820.2011.12.006MENG Zheng, LIU Zhi-heng, LUO Shi-hui. Influence of suspension stiffness of traction motor on the service life of locomotive suspension bearing[J]. Diesel Locomotives, 2011(12): 11-14. (in Chinese) doi: 10.3969/j.issn.1003-1820.2011.12.006 [80] 赵心颖. 高速列车牵引传动系统机电耦合振动及其抑制方法研究[D]. 北京: 北京交通大学, 2017.ZHAO Xin-ying. Electromechanical coupled vibration and the suppression strategy in traction drive system of high-speed train[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese) [81] 姬烽烽. 机车牵引电机转子系统的非线性动力学研究[D]. 兰州: 兰州交通大学, 2018.JI Feng-feng. Nonliner dynamic analysis of rotor system for locomotive traction motor[D]. Lanzhou: Lanzhou Jiaotong University, 2018. (in Chinese) [82] 周生通, 朱经纬, 肖乾, 等. 初始静偏心与重力载荷对动车牵引电机转子轴心轨迹的影响[J]. 机械工程学报, 2020, 56(17): 145-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017015.htmZHOU Sheng-tong, ZHU Jing-wei, XIAO Qian, et al. Initial static eccentricity and gravity load on rotor orbit of EMU traction motor[J]. Journal of Mechanical Engineering, 2020, 56(17): 145-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017015.htm [83] 周生通, 朱经纬, 周新建, 等. 组合载荷作用下动车牵引电机转子系统弯扭耦合振动特性[J]. 交通运输工程学报, 2020, 20(1): 159-170. doi: 10.19818/j.cnki.1671-1637.2020.01.013ZHOU Sheng-tong, ZHU Jing-wei, ZHOU Xin-jian, et al. Bending-torsional coupling vibration characteristics of EMU traction motor rotor system under combined loads[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 159-170. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.013 [84] 陈聚龙, 王俊国, 陈跃威, 等. 铁路机车牵引电机临界转速和不平衡响应分析[J]. 机械强度, 2017, 39(6): 1264-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201706002.htmCHEN Ju-long, WANG Jun-guo, CHEN Yue-wei, et al. Critical speed and unbalance response of traction motor for railway locomotive[J]. Journal of Mechanical Strength, 2017, 39(6): 1264-1270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201706002.htm [85] 陈哲明, 曾京. 牵引电机转子振动对高速列车动力学性能的影响[J]. 工程力学, 2011, 28(1): 238-244. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101039.htmCHEN Zhe-ming, ZENG Jing. Effect of rotor vibration of traction motor on dynamic behavior of high speed train[J]. Engineering Mechanics, 2011, 28(1): 238-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101039.htm [86] WILLIAMSON S, LIM L H, ROBINSON M J. Finite-element models for cage induction motor analysis[J]. IEEE Transactions on Industry Applications, 1990, 26(6): 1007-1017. doi: 10.1109/28.62370 [87] VASSENT E, MEUNIER G, FOGGIA A, et al. Simulation of induction machine operation using a step-by-step finite-element method[J]. Journal of Applied Physics, 1990, 67(9): 5809-5811. doi: 10.1063/1.345971 [88] SMITH A C, WILLIAMSON S, SMITH J R. Transient currents and torques in wound-rotor induction motors using the finite-element method[J]. IEE Proceedings B: Electric Power Applications, 1990, 137(3): 160-173. doi: 10.1049/ip-b.1990.0017 [89] WILLIAMSON S, ROBINSON M J. Calculation of cage induction motor equivalent circuit parameters using finite elements[J]. IEE Proceedings B: Electric Power Applications, 1991, 138(5): 264-276. doi: 10.1049/ip-b.1991.0032 [90] PHAM T H, WENDLING P F, SALON S J, et al. Transient finite element analysis for an induction motor with external circuit connections and electromechanical coupling[J]. IEEE Transactions on Energy Conversion, 1999, 14(4): 1407-1412. doi: 10.1109/60.815081 [91] HOLOPAINEN T P. Electromechanical interaction in rotor dynamics of cage induction motors[R]. Espoo: VTT Technical Research Centre of Finland, 2004. [92] CHEN Xing, YUAN Shi-hua, PENG Zeng-xiong. Nonlinear vibration for PMSM used in HEV considering mechanical and magnetic coupling effects[J]. Nonlinear Dynamics, 2015, 80(1/2): 541-552. [93] CHEN Xing, HU Ji-bin, PENG Zeng-xiong, et al. Nonlinear torsional vibration characteristics of PMSM for HEV considering electromagnetic excitation[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 49(1): 9-21. doi: 10.3233/JAE-140192 [94] 孟杰, 陈小安, 合烨. 高速电主轴电动机-主轴系统的机电耦合动力学建模[J]. 机械工程学报, 2007, 43(12): 160-165. doi: 10.3321/j.issn:0577-6686.2007.12.030MENG Jie, CHEN Xiao-an, HE Ye. Electromechanical coupled dynamical modeling of high speed motorized spindle's motor-spindle subsystem[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12): 160-165. (in Chinese) doi: 10.3321/j.issn:0577-6686.2007.12.030 [95] 赵心颖, 林飞, 杨中平, 等. 高速列车牵引传动系统机电耦合振动特性研究[J]. 铁道学报, 2018, 40(9): 40-47. doi: 10.3969/j.issn.1001-8360.2018.09.006ZHAO Xin-ying, LIN Fei, YANG Zhong-ping, et al. Study on mechanism and suppression of electromechanical coupling vibration in traction drive system of high-speed train[J]. Journal of the China Railway Society, 2018, 40(9): 40-47. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.09.006 [96] 赵心颖, 杨中平, 林飞, 等. 高速列车牵引传动系统机电耦合振动及其影响因素分析[J]. 铁道学报, 2019, 41(10): 38-46. doi: 10.3969/j.issn.1001-8360.2019.10.006ZHAO Xin-ying, YANG Zhong-ping, LIN Fei, et al. Study on electromechanical coupling vibration of traction drive system of high-speed train and its influence factor[J]. Journal of the China Railway Society, 2019, 41(10): 38-46. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.10.006 [97] ZHOU Zi-wei, CHEN Zai-gang, SPIRYAGIN M, et al. Dynamic performance of locomotive electric drive system under excitation from gear transmission and wheel-rail interaction[J]. Vehicle System Dynamics, 2021, DOI: 10.1080/00423114.2021.1876887. [98] ZHOU Zi-wei, CHEN Zai-gang, SPIRYAGIN M, et al. Dynamic response feature of electromechanical coupled drive subsystem in a locomotive excited by wheel flat[J]. Engineering Failure Analysis, 2021, 122: 105248. doi: 10.1016/j.engfailanal.2021.105248 [99] 周明磊. 电力机车牵引电机在全速度范围的控制策略研究[D]. 北京: 北京交通大学, 2013.ZHOU Ming-lei. Research on full speed range control strategy of electrical locomotive traction motor[D]. Beijing: Beijing Jiaotong University, 2013. (in Chinese) [100] 刘志刚, 郝荣泰. 电力机车异步牵引电机矢量控制方法研究[J]. 铁道学报, 1994, 16(2): 13-19. doi: 10.3321/j.issn:1001-8360.1994.02.003LIU Zhi-gang, HAO Rong-tai. Research on vector control method of traction induction motor of electric locomotive[J]. Journal of the China Railway Society, 1994, 16(2): 13-19. (in Chinese) doi: 10.3321/j.issn:1001-8360.1994.02.003 [101] 杜永红. 轻轨车牵引电机矢量控制研究[D]. 北京: 北京交通大学, 2009.DU Yong-hong. Research on traction motor vector control of light rail vehicle[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese) [102] 李哲峰. 100%低地板车牵引传动系统分析与控制策略研究[D]. 北京: 北京交通大学, 2009.LI Zhe-feng. 100% low-floor vehicle traction drive system analysis and control strategy research[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese) [103] TAKAHASHI I, NOGUCHI T. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Transactions on Industry Applications, 1986(5): 820-827. [104] CHAPUIS Y A, ROYE D, DAVOINE J. Principles and implementation of direct torque control by stator flux orientation of an induction motor[C]//IEEE. Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition. New York: IEEE, 1995: 185-191. [105] ZHONG L M, RAHMAN M F, HU W Y, et al. Analysis of direct torque control in permanent magnet synchronous motor drives[J]. IEEE Transactions on Power Electronics, 1997, 12(3): 528-536. doi: 10.1109/63.575680 [106] 徐子峻, 邬平波, 崔利通. 高速列车牵引电机直接转矩控制仿真与分析[J]. 机械工程与自动化, 2015(1): 27-28, 31. doi: 10.3969/j.issn.1672-6413.2015.01.011XU Zi-jun, WU Ping-bo, CUI Li-tong. Simulation and analysis of direct torque control for traction motors in high speed trains[J]. Mechanical Engineering and Automation, 2015(1): 27-28, 31. (in Chinese) doi: 10.3969/j.issn.1672-6413.2015.01.011 [107] 张靖. 基于RT-LAB的牵引电机直接转矩控制半实物仿真实现[D]. 成都: 西南交通大学, 2014.ZHANG Jing. Research on direct torque control for traction motor and hardware in loop simulation based on RT-LAB[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese) [108] 陈哲明. 高速列车驱动制动动力学及其控制研究[D]. 成都: 西南交通大学, 2010.CHEN Zhe-ming. Study on the dynamics and control of high speed train under traction and braking[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese) [109] 林文立. 地铁动车牵引传动系统分析、建模及优化[D]. 北京: 北京交通大学, 2010.LING Wen-li. Analysis, modeling and optimization of metro traction system[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese) [110] 林文立, 刘志刚, 孙大南, 等. 基于最优粘着利用的地铁牵引电机并联控制策略[J]. 电工技术学报, 2010, 25(6): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201006008.htmLING Wen-li, LIU Zhi-gang, SUN Da-nan, et al. Metro parallel-connected motor drive control based on optimized adhesion utilization[J]. Transactions of China Electrotechnical Society, 2010, 25(6): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201006008.htm [111] 杨顺昌, 廖勇, 余渝. 考虑谐波影响后交流励磁电动机电磁转矩的分析与计算[J]. 电工技术学报, 2003, 18(1): 5-9. doi: 10.3321/j.issn:1000-6753.2003.01.002YANG Shun-chang, LIAO Yong, YU Yu. Analysis and calculation of electromagnetic torques for ac excited motors incorporating the effect of harmonic currents in the excitation source[J]. Transactions of China Electrotechnical Society, 2003, 18(1): 5-9. (in Chinese) doi: 10.3321/j.issn:1000-6753.2003.01.002 [112] 黄泽好, 吴晓宇, 陈哲明. 高速列车异步牵引电机谐波转矩的分析与计算[J]. 重庆理工大学学报(自然科学), 2013, 27(8): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201308002.htmHANG Ze-hao, WU Xiao-yu, CHEN Zhe-ming. Analysis and calculation of asynchronous traction motor for the high-speed train[J]. Journal of Chongqing University of Technology (Natural Science), 2013, 27(8): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL201308002.htm [113] 李伟, 韩力. 逆变器供电的感应电动机谐波转矩分析与计算[J]. 微特电机, 2005(4): 7-9. doi: 10.3969/j.issn.1004-7018.2005.04.002LI Wei, HAN Li. Analysis and calculation of harmonic torques of induction motor fed inverter[J]. Small and Special Electrical Machines, 2005(4): 7-9. (in Chinese) doi: 10.3969/j.issn.1004-7018.2005.04.002 [114] 赵怀耘, 刘建新, 翟婉明. 异步牵引电机谐波转矩对机车动力学的影响[J]. 西南交通大学学报, 2009, 44(2): 269-273. doi: 10.3969/j.issn.0258-2724.2009.02.023ZHAO Huai-yun, LIU Jian-xin, ZHAI Wan-ming. Effects of harmonic torques of asynchronous traction motor on locomotive dynamics[J]. Journal of Southwest Jiaotong University, 2009, 44(2): 269-273. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.02.023 [115] 徐坤, 曾京, 祁亚运, 等. 牵引电机谐波转矩对高速动车动力学性能的影响[J]. 振动与冲击, 2018, 37(19): 153-158, 182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819025.htmXU Kun, ZENG Jing, QI Ya-yun, et al. Influences of harmonic torque of traction motor on dynamic performance of high-peed trains[J]. Journal of Vibration and Shock, 2018, 37(19): 153-158, 182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819025.htm [116] 朱海燕, 尹必超, 胡华涛, 等. 谐波转矩对高速列车齿轮箱体与牵引电机振动特性的影响[J]. 交通运输工程学报, 2019, 19(6): 65-76. doi: 10.19818/j.cnki.1671-1637.2019.06.007ZHU Hai-yan, YIN Bi-chao, HU Hua-tao, et al. Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 65-76. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.007 [117] 王文勋. 动车组牵引电机转矩脉动研究[D]. 北京: 北京交通大学, 2015.WANG Wen-xun. Research on torque ripple of traction motors in electric multiple units[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese) [118] FAIZ J, EBRAHIMI B M, SHARIFIAN M B B. Different faults and their diagnosis techniques in three-phase squirrel-cage induction motors—a review[J]. Electromagnetics, 2006, 26(7): 543-569. doi: 10.1080/02726340600873003 [119] NANDI S, TOLIYAT H A. Condition monitoring and fault diagnosis of electrical machines—a review[C]//IEEE. Conference Record of the 1999 IEEE Industry Applications Conference. New York: IEEE, 1999: 197-204. [120] KAWASE Y, MIMURA N, IDA K. 3-D electromagnetic force analysis of effects of off-center of rotor in interior permanent magnet synchronous motor[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1858-1862. doi: 10.1109/20.877807 [121] DORRELL D G. Sources and characteristics of unbalanced magnetic pull in three-phase cage induction motors with axial-varying rotor eccentricity[J]. IEEE Transactions on Industry Applications, 2010, 47(1): 12-24. http://ieeexplore.ieee.org/iel5/28/5688725/05620970.pdf [122] GUO D, CHU F, CHEN D. The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor[J]. Journal of Sound and Vibration, 2002, 254(2): 297-312. http://www.researchgate.net/profile/Fulei_Chu/publication/222123073_The_unbalanced_magnetic_pull_and_its_effects_on_vibration_in_a_three-phase_generator_with_eccentric_rotor._J._Sound_Vib._254(2)_297-312/links/55b77ee508ae092e965718bc.pdf -