Spectrum analysis of hunting motion of flexible bogies in high-speed EMUs
-
摘要: 为分析高速动车组在不同运行速度下的转向架蛇行运动频谱,推导了自由轮对蛇行运动模型,建立了与纵向、横向速度和摇头角速度相关的3个一阶微分方程;建立了柔性转向架蛇行运动模型,给出了与轮对和构架的横移和摇头自由度相关的9自由度蛇行运动方程;结合车辆悬挂和实测轮轨接触关系等参数,联立自由轮对蛇行运动方程,求解不同轮对初始横移下的构架蛇行波长和频率;以某型动车组一个车轮镟修周期内实测的车轮踏面廓形为例,分析不同车轮镟后里程下的构架蛇行波长及频率的变化规律。分析结果表明:部分测点出现明显的2.9、14.9和33.6Hz振动频率,且这些频率随着车速的增加呈线性增长趋势;33.6 Hz来源于车辆通过CRTS Ⅱ型轨道板时频率;14.9 Hz来源于350 km·h-1运行时的车轮转动频率;当轮对初始横移为3 mm的等效锥度为0.14时计算的构架蛇行频率为3.0 Hz,与实测构架横向振动频率2.9 Hz接近,从而验证了微分方程的准确性;随着车轮镟后里程的增加,相同轮对横移下的等效锥度不断增大,构架蛇行波长不断减小,蛇行频率也随之增高;车轮镟修后20.6万公里,轮对横移1 mm时蛇行频率最大接近8 Hz。Abstract: In order to analyze the spectrum of bogie hunting motion of high-speed EMUs at different operating speeds, a free wheelset hunting motion model was deduced, and three first-order differential equations related to the longitudinal velocity, lateral velocity and yaw angular velocity were established. A hunting motion model of the flexible bogie was established, and a 9- degree of freedom hunting motion equation related to the degrees of freedom of lateral displacement and shaking-head of wheelset and frame was given. Combined with the parameters of vehicle suspension and the measured wheel-rail contact relationship, and together with the hunting motion equation of free wheelset, the hunting wavelengths and frequencies of frame under different initial lateral displacements of wheelset were solved. Taking the wheel tread profile measured in one wheel repair cycle of a certain type of EMUs as an example, the variation law of the frame hunting wavelengths and frequencies under different mileages after wheel repair were analyzed. Analysis results show that some measuring points have obvious vibration frequencies of 2.9, 14.9 and 33.6 Hz, and these frequencies increase linearly with the vehicle speed. 33.6 Hz comes from the frequency when the vehicle passes through the CRTS Ⅱ track plate; 14.9 Hz comes from the wheel rotation frequency when running at 350 km·h-1. When the initial lateral displacement of the wheelset is 3 mm and the equivalent conicity is 0.14, the calculated hunting frequency of the frame is 3.0 Hz, which is close to the measured lateral vibration frequency of the frame of 2.9 Hz. And then the accuracy of the differential equation is verified. With the increase of the mileage after the wheel repair, the equivalent conicity under the same wheelset lateral displacement continues to increase, the hunting wavelength of the frame continues to decrease, and the hunting frequency also increases. After 206 000 km after wheel repair, the maximum hunting frequency is close to 8 Hz when the wheelset lateral displacement is 1 mm. 1 tab, 18 figs, 32 refs.
-
Key words:
- vehicle engineering /
- flexible bogie /
- hunting motion /
- hunting frequency /
- equivalent conicity /
- frame stability
-
表 1 高速动车组转向架动力学参数
Table 1. Dynamics parameters of high-speed EMUs bogies
参数 数值 轮对质量/kg 1 901.8 轮对惯量/(kg·m-2) 684.65 构架质量/ kg 2 280 构架惯量/(kg·m-2) 2 280 轴距之半/m 1.25 一系横向距离/m 1 一系纵向刚度/(MN·m-1) 14.7 一系横向刚度/(MN·m-1) 6.5 -
[1] WICKENS A H. The dynamic stability of railway vehicle wheelsets and bogies having profiled wheels[J]. International Journal of Solids and Structures, 1965, 1(3): 319-341. doi: 10.1016/0020-7683(65)90037-5 [2] PATER A D. The approximate determination of the hunting movement of a railway vehicle by aid of the method of Krylov and Bogoljubov[J]. Applied Scientific Research, 1961, 10(1): 205-228. doi: 10.1007/BF00411914 [3] TRUE H. Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way[J]. Vehicle System Dynamics, 2013, 51(3): 443-459. doi: 10.1080/00423114.2012.738919 [4] 曾京. 车辆系统的蛇行运动分叉及极限环的数值计算[J]. 铁道学报, 1996, 18(3): 13-19. doi: 10.3321/j.issn:1001-8360.1996.03.003ZENG Jing. Numerical calculation of hunting bifurcation and limit cycle of vehicle system[J]. Journal of the China Railway Society, 1996, 18(3): 13-19. (in Chinese) doi: 10.3321/j.issn:1001-8360.1996.03.003 [5] POLACH O. Wheel profile design for target conicity and wide tread wear spreading[J]. Wear, 2011, 271(1/2): 195-202. [6] POLACH O. Characteristic parameters of nonlinear wheel/rail contact geometry[J]. Vehicle System Dynamics, 2010, 48(S): 19-36. [7] POLACH O, NICKISCH D. Wheel/rail contact geometry parameters in regard to vehicle behaviour and their alteration with wear[J]. Wear, 2016, 366/367: 200-208. doi: 10.1016/j.wear.2016.03.029 [8] 张卫华, 罗仁, 宋春元, 等. 基于电机动力吸振的高速列车蛇行运动控制[J]. 交通运输工程学报, 2020, 20(5): 125-134. doi: 10.19818/j.cnki.1671-1637.2020.05.010ZHANG Wei-hua, LUO Ren, SONG Chun-yuan, et al. Hunting control of high-speed train using traction motor as dynamic absorber[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 125-134. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.010 [9] 祁亚运, 戴焕云, 魏来, 等. 变刚度转臂定位节点对地铁车辆车轮磨耗的影响[J]. 振动与冲击, 2019, 38(6): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906015.htmQI Ya-yun, DAI Huan-yun, WEI Lai, et al. Influence of changing the rigid arm positioning node on the wheel wear of metro vehicles[J]. Journal of Vibration and Shock, 2019, 38(6): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906015.htm [10] 李国栋, 曾京, 池茂儒, 等. 高速列车轮轨匹配关系改进研究[J]. 机械工程学报, 2018, 54(4): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804015.htmLI Guo-dong, ZENG Jing, CHI Mao-ru, et al. Study on the improvement of wheel-rail matching relationship for high speed train[J]. Journal of Mechanical Engineering, 2018, 54(4): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804015.htm [11] ZHANG Ting-ting, DAI Huan-yun. On the nonlinear dynamics of a high-speed railway vehicle with nonsmooth elements[J]. Applied Mathematical Modelling, 2019, 76: 526-544. doi: 10.1016/j.apm.2019.06.027 [12] GUO Jing-ying, SHI Huai-long, LUO Ren, et al. Bifurcation analysis of a railway wheelset with nonlinear wheel-rail contact[J]. Nonlinear Dynamics, 2021, 104(2): 989 -1005. doi: 10.1007/s11071-021-06373-8 [13] 何旭升, 吴会超, 高峰. 高速动车组晃车机理试验研究[J]. 大连交通大学学报, 2017, 38(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201701005.htmHE Xu-sheng, WU Hui-chao, GAO Feng. Test study on carbody swing of high-speed EMUs[J]. Journal of Dalian Jiaotong University, 2017, 38(1): 21-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201701005.htm [14] 陈迪来, 沈钢, 宗聪聪. 基于模态追踪的地铁车辆低频横向晃动分析[J]. 铁道学报, 2019, 41(10): 47-52. doi: 10.3969/j.issn.1001-8360.2019.10.007CHEN Di-lai, SHEN Gang, ZONG Cong-cong. Analysis of low-frequency lateral swaying of metro vehicle based on mode tracing[J]. Journal of the China Railway Society, 2019, 41(10): 47-52. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.10.007 [15] 陈经纬, 崔涛, 孙建锋, 等. 基于高速列车异常晃动的钢轨廓形打磨管理[J]. 机车电传动, 2020(5): 128-131, 137. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202005030.htmCHEN Jing-wei, CUI Tao, SUN Jian-feng, et al. Grinding management of rail profile based on abnormal hunting of high-speed train[J]. Electric Drive For Locomotives, 2020(5): 128-131, 137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202005030.htm [16] HUANG Cai-hong, ZENG Jing, LIANG Shu-lin. Carbody hunting investigation of a high speed passenger car[J]. Journal of Mechanical Science and Technology, 2013, 27(8), 2283-2292. doi: 10.1007/s12206-013-0611-z [17] 夏张辉, 周劲松, 宫岛, 等. 基于模态连续追踪的铁道车辆车体低频横向晃动现象研究[J]. 铁道学报, 2018, 40(12): 46-54. doi: 10.3969/j.issn.1001-8360.2018.12.007XIA Zhang-hui, ZHOU Jin-song, GONG Dao, et al. Research on low-frequency lateral sway of railway vehicle body based on modal continuous tracking[J]. Journal of the China Railway Society, 2018, 40(12): 46-54. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.12.007 [18] QI Ya-yun, DAI Huan-yun, SONG Chun-yuan, et al. Shaking analysis of high-speed train's carbody when cross lines[J]. Journal of Mechanical Science and Technology, 2019, 33(3): 1055-1064. doi: 10.1007/s12206-019-0205-5 [19] 崔利通, 李国栋, 宋春元, 等. 高速动车组悬挂参数优化研究[J]. 铁道学报, 2021, 43(4): 42-50. doi: 10.3969/j.issn.1001-8360.2021.04.006CUI Li-tong, LI Guo-dong, SONG Chun-yuan, et al. Study on optimization of suspension parameters of high-speed EMU trains[J]. Journal of the China Railway Society, 2021, 43(4): 42-50. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.04.006 [20] WEI Lai, ZENG Jing, CHI Mao-ru, et al. Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability[J]. Vehicle System Dynamics, 2017, 55(9): 1321-1342. doi: 10.1080/00423114.2017.1310386 [21] 关庆华, 温泽峰, 池茂儒, 等. 轮对蛇行运动的相位同步模态分析[J]. 机械工程学报, 2021, 57(24): 279-288.GUAN Qing-hua, WEN Ze-feng, CHI Mao-ru, et al. Phase synchronization modal analysis of wheelset hunting motion[J]. Journal of Mechanical Engineering, 2021, 57(24): 279-288. (in Chinese) [22] SHI Huai-long, WU Ping-bo. Flexible vibration analysis for car body of high-speed EMU[J]. Journal of Mechanical Science and Technology, 2016, 30(1): 55-66. doi: 10.1007/s12206-015-1207-6 [23] XU Kai, FENG Zheng, WU Hao, et al. Investigating the influence of rail grinding on stability, vibration, and ride comfort of high-speed EMUs using multi-body dynamics modelling[J]. Vehicle System Dynamics, 2019, 57(11): 1621-1642. doi: 10.1080/00423114.2018.1539234 [24] 周清跃, 田常海, 张银花, 等. CRH3型动车组构架横向失稳成因分析[J]. 中国铁道科学, 2014, 35(6): 105-110. doi: 10.3969/j.issn.1001-4632.2014.06.16ZHOU Qing-yue, TIAN Chang-hai, ZHANG Yin-hua, et al. Cause analysis for the lateral instability of CRH3 EMU framework[J]. China Railway Science, 2014, 35(6): 105-110. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.06.16 [25] 杨震寰, 戴焕云, 石俊杰, 等. 磨耗后轮轨型面接触关系及线路适应性分析[J]. 铁道学报, 2021, 43(5): 37-46. doi: 10.3969/j.issn.1001-8360.2021.05.005YANG Zhen-huan, DAI Huan-yun, SHI Jun-jie, et al. Analysis of worn wheel-rail contact relationship and line adaptability[J]. Journal of the China Railway Society, 2021, 43(5): 37-46. (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.05.005 [26] 李凡松, 王建斌, 石怀龙, 等. 动车组车体异常弹性振动原因及抑制措施研究[J]. 机械工程学报, 2019, 55(12): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912020.htmLI Fan-song, WANG Jian-bin, SHI Huai-long, et al. Research on causes and countermeasures of abnormal flexible vibration of car body for electric multiple units[J]. Journal of Mechanical Engineering, 2019, 55(12): 178-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912020.htm [27] WANG Qun-sheng, ZENG Jing, WU Yi, et al. Study on semi-active suspension applied on carbody underneath suspended system of high-speed railway vehicle[J]. Journal of Vibration and Control, 2020, 26(9/10): 671-679. [28] KOYANAGI S, 栾平景. 设计柔性转向架运行特性的方法(上): 柔性转向架的蛇行运动波长[J]. 国外铁道车辆, 1993, 30(5): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD199305005.htmKOYANAGI S, LUAN Ping-jing. A method for designing the operating characteristics of flexible bogies (Part 1)—hunting motion wavelength of flexible bogies[J]. Foreign Rolling Stock, 1993, 30(5): 23-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD199305005.htm [29] KOYANAGI S, 栾平景. 设计柔性转向架运行特性的方法(下)[J]. 国外铁道车辆, 1993, 30(6): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD199306012.htmKOYANAGI S, LUAN Ping-jing. A method for designing the operating characteristics of flexible bogies (Part 2)[J]. Foreign Rolling Stock, 1993, 30(6): 40-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD199306012.htm [30] 任尊松, 刘志明. 高速动车组振动传递及频率分布规律[J]. 机械工程学报, 2013, 49(16): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htmREN Zun-song, LIU Zhi-ming. Vibration and frequency domain characteristics of high speed train[J]. Journal of Mechanical Engineering, 2013, 49(16): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm [31] 干锋, 戴焕云. 基于空间矢量映射的新型轮轨接触点算法[J]. 机械工程学报, 2015, 51(10): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201510019.htmGAN Feng, DAI Huan-yun. New wheel-rail contact point algorithm method based on the space vector mapping principle[J]. Journal of Mechanical Engineering, 2015, 51(10): 119-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201510019.htm [32] 干锋, 戴焕云, 高浩, 等. 铁道车辆不同踏面等效锥度和轮轨接触关系计算[J]. 铁道学报, 2013, 35(9): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201309005.htmGAN Feng, DAI Huan-yun, GAO Hao, et al. Calculation of equivalent conicity and wheel-rail contact relationship of different railway vehicle treads[J]. Journal of the China Railway Society, 2013, 35(9): 19-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201309005.htm -