留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自动驾驶影响下的出行行为研究综述

李瑞敏 戴晶辰

李瑞敏, 戴晶辰. 自动驾驶影响下的出行行为研究综述[J]. 交通运输工程学报, 2022, 22(3): 41-54. doi: 10.19818/j.cnki.1671-1637.2022.03.003
引用本文: 李瑞敏, 戴晶辰. 自动驾驶影响下的出行行为研究综述[J]. 交通运输工程学报, 2022, 22(3): 41-54. doi: 10.19818/j.cnki.1671-1637.2022.03.003
LI Rui-min, DAI Jing-chen. Review on impact of autonomous driving on travel behaviors[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 41-54. doi: 10.19818/j.cnki.1671-1637.2022.03.003
Citation: LI Rui-min, DAI Jing-chen. Review on impact of autonomous driving on travel behaviors[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 41-54. doi: 10.19818/j.cnki.1671-1637.2022.03.003

自动驾驶影响下的出行行为研究综述

doi: 10.19818/j.cnki.1671-1637.2022.03.003
基金项目: 

国家重点研发计划 2019YFB1600100

详细信息
    作者简介:

    李瑞敏(1979-),男,山东莱州人,清华大学教授,工学博士,从事智能交通系统和城市交通规划与管理研究

  • 中图分类号: U491.2

Review on impact of autonomous driving on travel behaviors

Funds: 

National Key Research and Development Program of China 2019YFB1600100

More Information
Article Text (Baidu Translation)
  • 摘要: 从小汽车出行总需求、出行方式选择、在途时间利用三方面梳理了自动驾驶影响下的出行行为研究现状,分析了用于研究自动驾驶对出行行为影响的数据基础与研究方法,总结了影响自动驾驶环境下出行方式选择的关键因素,指出了出行行为研究存在的问题和未来发展方向。研究结果表明:出行总需求的相关研究主要关注当前服务不足人口的潜在出行,大多通过需求假设分析潜在的变化,在假设的可靠性和结果的准确度方面还存在不足;出行方式选择的相关研究显示车辆服务和出行属性、社会人口和家庭属性、出行习惯属性、居住地和环境属性、个人心理和偏好属性等是影响出行方式选择的关键因素,考虑到不同的研究对象、场景设计与分析方法,性别、年龄、持有驾照、家庭结构等因素对出行行为的具体影响还有待进一步检验;人们对自动驾驶时代在途时间利用的方式和受益程度的认知存在较大的不确定性与异质性,亟需理论模型来进一步讨论潜在的时间利用变化;基于自动驾驶对出行行为影响相关研究的局限性,提出了建立自动驾驶汽车的规范化描述和丰富数据采集方式,开展横向与纵向对比研究,加强各影响因素异质性的考量,辨析自动驾驶时代各类出行行为间的相互影响机制的改进方向。

     

  • 图  1  影响出行方式选择的关键因素与相关代表性文献

    Figure  1.  Key factors affecting travel mode choice and related representative literatures

    图  2  出行方式选择代表性文献所考虑的关键因素的分布

    Figure  2.  Distribution of key factors considered in representative literatures on travel mode choice

    图  3  代表性文献的发表时间和研究地区分布

    Figure  3.  Distributions of publication time and study location of representative literatures

    1.  Key factors affecting travel mode choice and related representative literature

    2.  Distribution of key factors in representative literature on travel mode choice

    3.  Distribution of publication time and study regions of representative literature

    表  1  自动驾驶对小汽车出行总需求的影响

    Table  1.   Impact of autonomous driving on total vehicle travel demand

    文献 数据基础 研究方法 主要结论
    Harper等[3] 2009 NHTS 需求假设 19岁及以上人群VMT增加2%~14%
    Brown等[11] 2009 NHTS 需求假设 16~85岁人群VMT增加40%
    Schoettle等[12-13] 自拟问卷调查和2009 NHTS 需求假设 18~39岁人群VMT增加10.6%
    Wadud等[14] 2009 NHTS 弹性分析与需求假设出行费用减少使整体VMT增加4%(低等级AV情景)或60%(L4级AV情景),由新增出行人口带来的出行使VMT增加2%~10%
    Harb等[15] 受访者 描述统计
    Pudāne等[16] 焦点小组成员 定性分析
    下载: 导出CSV

    表  2  关于出行方式选择代表性文献的分类

    Table  2.   Classification of representative literatures on travel mode choice

    分类项目 类别 文献数量 文献比例
    选择集的组成 全部为小汽车出行方式 7 0.26
    包括各类交通方式 20 0.74
    选择场景的选取 日常出行 10 0.37
    最后一公里 3 0.11
    长距离出行 2 0.07
    通勤出行 7 0.26
    休闲出行 3 0.11
    其他 8 0.30
    特定问题的关注 在途利用方式 3 0.11
    交通管理政策 1 0.04
    有无驾驶人 1 0.04
    监控方式 1 0.04
    分析文献总数 27
    下载: 导出CSV

    表  3  关于出行方式选择代表性文献的数据基础与研究方法

    Table  3.   Data foundations and research methodologies of representative literatures on travel mode choice

    文献 调查方式 研究对象 选择场景的来源 研究方法
    Saeed等[17] 在线问卷调查 1 922名美国民众(成年人,以驾驶人或者乘客的身份使用汽车去上班或上学) 虚拟场景 随机参数Logit模型
    Haboucha等[19] 在线问卷调查 721名居住在以色列和北美的民众 虚拟场景 因子分析与嵌套Logit Kernel模型
    Etzioni等[20] 在线问卷调查 1 669名来自6个不同国家的民众 基于受访者陈述的一段出行 混合多项Logit模型
    Wicki等[21] 在线问卷调查 773名瑞士沙夫豪森州民众(了解自动驾驶巴士路测) 现实生活中的一段出行 综合选择与潜在变量模型
    Winter等[22] 在线问卷调查 796名荷兰民众 虚拟场景 带有潜在类的嵌套Logit模型
    Yap等[23] 在线问卷调查 761名荷兰民众(年满18岁,每月至少出行2次) 虚拟场景 因子分析与混合Logit模型
    Cai等[24] 在线问卷调查和实地问卷调查 1 477名新加坡民众 现实生活中的一段出行 Logit Kernel模型
    Gurumurthy等[25] 在线问卷调查 2 588名美国民众 其他 多项Logit模型
    Krueger等[26] 在线问卷调查 512名悉尼的通勤者(成年,必须有工作或正在上学;每周至少通勤3次;必须是租房或有住房抵押贷款) 虚拟场景 混合多项Logit模型
    Ashkrof等[27] 在线问卷调查 663名荷兰民众(年满18岁,持有驾照,每月至少使用一次汽车) 虚拟场景 探索性因子分析和带有面板效应的混合Logit模型
    Pakusch等[28] 定性访谈 25名德国的千禧一代 其他 专题分析
    Booth等[29] 在线问卷调查 1 624名澳大利亚民众(年龄16岁及以上) 其他 普通最小二乘多元回归分析
    Carrese等[30] 在线问卷调查 201名罗马民众 虚拟场景 多项Logit模型
    Abe等[31] 在线问卷调查 1 962名日本民众(20~74岁) 基于受访者陈述的一段出行 面板混合有序Logit (OL) 模型
    黄浩[32] 在线问卷调查和实地问卷调查 558名中国民众 虚拟场景 多指标多因子(MIMIC) 模型与混合Logit模型
    Piatkowski[33] 在实地体验前后填写在线问卷 551名内布拉斯加州民众 其他 二元Logistic回归模型
    Krueger等[34] 在线问卷调查 435名澳大利亚民众 基于受访者陈述的一段出行 k-means聚类法与混合Logit模型
    Wang等[35] 在线问卷调查 1 142名新加坡民众(20~85岁) 基于受访者陈述的一段出行 回归分析与混合Logit模型
    Gao等[36] 在线问卷调查 502名成年美国民众 虚拟场景 混合Logit模型
    Abe[37] 在线问卷调查 2 300名日本民众(0~74岁,居住在距东京都最近的火车站1~5 km的范围内) 基于受访者陈述的一段出行 多项Logit模型和混合Logit模型
    Pakusch等[38] 在线问卷调查 302名德国民众 其他 Bradley-Terry-Luce (BTL)模型
    Kim等[39] 邮寄纸质版问卷并提供在线问卷链接 2 890名美国佐治亚州民众 虚拟场景 因子分析和潜在类聚类分析
    Zhou等[40] 在线问卷调查 1 433名澳大利亚民众 基于受访者陈述的一段出行 随机参数Logit模型
    Alhajyaseen等[41] 在线问卷调查 315名卡塔尔民众 虚拟场景 多项Logit模型
    Etzioni等[42] 在线问卷调查 714名成年以色列民众 虚拟场景 探索性因子分析与MIMIC模型和潜在类多项Logit模型
    Sweet[43] 在线问卷调查 393名中国民众 虚拟场景 k-means聚类法与混合Logit模型
    姚荣涵等[44] 在线问卷调查 1 684名住在大多伦多和汉密尔顿地区的民众(有工作,通勤上班以及家庭保有汽车) 虚拟场景 混合Logit模型
    下载: 导出CSV

    1.   Impact of autonomous driving on total travel demand by sedan cars

    2.   Classification of representative literature on travel mode choice

    3.   Data bases and research methods of representative literature on travel mode choice

  • [1] LITMAN T. Autonomous vehicle implementation predictions: implications for transport planning[R]. Victoria: Victoria Transport Policy Institute, 2020.
    [2] CHAN Ching-yao. Advancements, prospects, and impacts of automated driving systems[J]. International Journal of Transportation Science and Technology, 2017, 6(3): 208-216. doi: 10.1016/j.ijtst.2017.07.008
    [3] HARPER C D, HENDRICKSON C T, MANGONES S, et al. Estimating potential increases in travel with autonomous vehicles for the non-driving, elderly and people with travel-restrictive medical conditions[J]. Transportation Research Part C: Emerging Technologies, 2016, 72: 1-9. doi: 10.1016/j.trc.2016.09.003
    [4] DUARTE F, RATTI C. The impact of autonomous vehicles on cities: a review[J]. Journal of Urban Technology, 2018, 25(4): 3-18. doi: 10.1080/10630732.2018.1493883
    [5] TAIEBAT M, BROWN A L, SAFFORD H R, et al. A review on energy, environmental, and sustainability implications of connected and automated vehicles[J]. Environmental Science and Technology, 2018, 52(20): 11449-11465.
    [6] KESZEY T. Behavioural intention to use autonomous vehicles: systematic review and empirical extension[J]. Transportation Research Part C: Emerging Technologies, 2020, 119: 102732. doi: 10.1016/j.trc.2020.102732
    [7] SPENCE J C, KIM Y B, LAMBOGLIA C G, et al. Potential impact of autonomous vehicles on movement behavior: a scoping review[J]. American Journal of Preventive Medicine, 2020, 58(6): 191-199. doi: 10.1016/j.amepre.2020.01.010
    [8] DEB S, RAHMAN M M, STRAWDERMAN L J, et al. Pedestrians' receptivity toward fully automated vehicles: research review and roadmap for future research[J]. IEEE Transactions on Human-Machine Systems, 2018, 48(3): 279-290. doi: 10.1109/THMS.2018.2799523
    [9] 唐立, 卿三东, 徐志刚, 等. 自动驾驶公众接受度研究综述[J]. 交通运输工程学报, 2020, 20(2): 131-146. doi: 10.19818/j.cnki.1671-1637.2020.02.011

    TANG Li, QING San-dong, XU Zhi-gang, et al. Research review on public acceptance of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 131-146. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.011
    [10] 秦波, 陈筱璇, 屈伸. 自动驾驶车辆对城市的影响与规划应对: 基于涟漪模型的文献综述[J]. 国际城市规划, 2019, 34(6): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCG201906019.htm

    QIN Bo, CHEN Xiao-xuan, QU Shen. The impacts of autonomous vehicle on the cities and planning responses: a literature review based on ripple effect model[J]. Urban Planning International, 2019, 34(6): 108-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWCG201906019.htm
    [11] BROWN A, GONDER J, REPAC B. An analysis of possible energy impacts of automated vehicles[C]//MEYER G, BEIKER S. Road Vehicle Automation. Berlin: Springer, 2014: 137-153.
    [12] SCHOETTLE B, SIVAK M. The reasons for the recent decline in young driver licensing in the United States[J]. Traffic Injury Prevention, 2014, 15(1): 6-9. doi: 10.1080/15389588.2013.839993
    [13] SIVAK M, SCHOETTLE B. Influence of current nondrivers on the amount of travel and trip patterns with self-driving vehicles[R]. Michigan: University of Michigan Transportation Research Institute, 2015.
    [14] WADUD Z, MACKENZIE D, LEIBY P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles[J]. Transportation Research Part A: Policy and Practice, 2016, 86: 1-18. doi: 10.1016/j.tra.2015.12.001
    [15] HARB M, XIAO Yu, CIRCELLA G, et al. Projecting travelers into a world of self-driving vehicles: estimating travel behavior implications via a naturalistic experiment[J]. Transportation, 2018, 45(6): 1671-1685. doi: 10.1007/s11116-018-9937-9
    [16] PUDĀNE B, RATAJ M, MOLIN E J E, et al. How will automated vehicles shape users' daily activities? Insights from focus groups with commuters in the Netherlands[J]. Transportation Research Part D: Transport and Environment, 2019, 71: 222-235. doi: 10.1016/j.trd.2018.11.014
    [17] SAEED T U, BURRIS M W, LABI S, et al. An empirical discourse on forecasting the use of autonomous vehicles using consumers' preferences[J]. Technological Forecasting and Social Change, 2020, 158: 120130. doi: 10.1016/j.techfore.2020.120130
    [18] KIM S H, MOKHTARIAN P L, CIRCELLA G. How, and for whom, will activity patterns be modified by self-driving cars? expectations from the state of Georgia[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70: 68-80. doi: 10.1016/j.trf.2020.02.012
    [19] HABOUCHA C J, ISHAQ R, SHIFTAN Y. User preferences regarding autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2017, 78: 37-49. doi: 10.1016/j.trc.2017.01.010
    [20] ETZIONI S, HAMADNEH J, ELVARSSON A B, et al. Modeling cross-national differences in automated vehicle acceptance[J]. Sustainability, 2020, 12(22): 9765. doi: 10.3390/su12229765
    [21] WICKI M, GUIDON S, BECKER F, et al. How technology commitment affects mode choice for a self-driving shuttle service[J]. Research in Transportation Business and Management, 2019, 32: 100458. doi: 10.1016/j.rtbm.2020.100458
    [22] WINTER K, CATS O, MARTENS K, et al. Identifying user classes for shared and automated mobility services[J]. European Transport Research Review, 2020, 12(1): 36. doi: 10.1186/s12544-020-00420-y
    [23] YAP M D, CORREIA G, VAN AREM B. Preferences of travellers for using automated vehicles as last mile public transport of multimodal train trips[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 1-16. doi: 10.1016/j.tra.2016.09.003
    [24] CAI Yu-tong, WANG Hong, ONG G P, et al. Investigating user perception on autonomous vehicle (AV) based mobility-on-demand (MOD) services in Singapore using the logit kernel approach[J]. Transportation, 2019, 46(6): 2063-2080. doi: 10.1007/s11116-019-10032-8
    [25] GURUMURTHY K M, KOCKELMAN K M. Modeling Americans' autonomous vehicle preferences: a focus on dynamic ride-sharing, privacy and long-distance mode choices[J]. Technological Forecasting and Social Change, 2020, 150: 119792. doi: 10.1016/j.techfore.2019.119792
    [26] KRUEGER R, RASHIDI T H, DIXIT V V. Autonomous driving and residential location preferences: evidence from a stated choice survey[J]. Transportation Research Part C: Emerging Technologies, 2019, 108: 255-268. doi: 10.1016/j.trc.2019.09.018
    [27] ASHKROF P, DE ALMEIDA CORREIA G H, CATS O, et al. Impact of automated vehicles on travel mode preference for different trip purposes and distances[J]. Transportation Research Record, 2019, 2673(5): 607-616. doi: 10.1177/0361198119841032
    [28] PAKUSCH C, MEURER J, TOLMIE P, et al. Traditional taxis vs automated taxis-does the driver matter for millennials?[J]. Travel Behaviour and Society, 2020, 21: 214-225. doi: 10.1016/j.tbs.2020.06.009
    [29] BOOTH L, NORMAN R, PETTIGREW S. The potential implications of autonomous vehicles for active transport[J]. Journal of Transport and Health, 2019, 15: 100623. doi: 10.1016/j.jth.2019.100623
    [30] CARRESE S, NIGRO M, PATELLA S M, et al. A preliminary study of the potential impact of autonomous vehicles on residential location in Rome[J]. Research in Transportation Economics, 2019, 75: 55-61. doi: 10.1016/j.retrec.2019.02.005
    [31] ABE R, KITA Y, FUKUDA D. An experimental approach to understanding the impacts of monitoring methods on use intentions for autonomous vehicle services: survey evidence from Japan[J]. Sustainability, 2020, 12(6): 2157. doi: 10.3390/su12062157
    [32] 黄浩. 基于扩展计划行为理论的自动驾驶汽车方式选择行为研究[D]. 镇江: 江苏大学, 2019.

    HUANG Hao. Study on mode choice behavior of autonomous vehicle based on an extended theory of planned behavior[D]. Zhenjiang: Jiangsu University, 2019. (in Chinese)
    [33] PIATKOWSKI D P. Autonomous shuttles: what do users expect and how will they use them?[J]. Journal of Urban Technology, 2021, 28(3/4): 97-115.
    [34] KRUEGER R, RASHIDI T H, ROSE J M. Preferences for shared autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 343-355. doi: 10.1016/j.trc.2016.06.015
    [35] WANG Shen-hao, ZHAO Jin-hua. Risk preference and adoption of autonomous vehicles[J]. Transportation Research Part A: Policy and Practice, 2019, 126: 215-229. doi: 10.1016/j.tra.2019.06.007
    [36] GAO Jing-ya, RANJBARI A, MACKENZIE D. Would being driven by others affect the value of travel time? Ridehailing as an analogy for automated vehicles[J]. Transportation, 2019, 46(6): 2103-2116. doi: 10.1007/s11116-019-10031-9
    [37] ABE R. Preferences of urban rail users for first- and last-mile autonomous vehicles: price and service elasticities of demand in a multimodal environment[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103105. doi: 10.1016/j.trc.2021.103105
    [38] PAKUSCH C, STEVENS G, BODEN A, et al. Unintended effects of autonomous driving: a study on mobility preferences in the future[J]. Sustainability, 2018, 10(7): 2404. doi: 10.3390/su10072404
    [39] KIM S H, CIRCELLA G, MOKHTARIAN P L. Identifying latent mode-use propensity segments in an all-AV era[J]. Transportation Research Part A: Policy and Practice, 2019, 130: 192-207. doi: 10.1016/j.tra.2019.09.015
    [40] ZHOU Fan, ZHENG Zu-duo, WHITEHEAD J, et al. Preference heterogeneity in mode choice for car-sharing and shared automated vehicles[J]. Transportation Research Part A: Policy and Practice, 2020, 132: 633-650. doi: 10.1016/j.tra.2019.12.004
    [41] ALHAJYASEEN W, ADNAN M, ABUHEJLEH A, et al. Travelers' preferences regarding autonomous mobility in the State of Qatar[J]. Personal and Ubiquitous Computing, 2021, 25(1): 141-149. doi: 10.1007/s00779-020-01407-1
    [42] ETZIONI S, DAZIANO R A, BEN-ELIA E, et al. Preferences for shared automated vehicles: a hybrid latent class modeling approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: 103013. doi: 10.1016/j.trc.2021.103013
    [43] SWEET M N. User interest in on-demand, shared, and driverless mobility: evidence from stated preference choice experiments in Southern Ontario[J]. Travel Behaviour and Society, 2021, 23: 120-133.
    [44] 姚荣涵, 梁亚林, 刘锴, 等. 考虑合乘的共享自动驾驶汽车选择行为实证分析[J]. 交通运输系统工程与信息, 2020, 20(1): 228-233. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001035.htm

    YAO Rong-han, LIANG Ya-lin, LIU Kai, et al. Empirical analysis of choice behavior for shared autonomous vehicles with concern of ride-sharing[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 228-233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001035.htm
    [45] KESERU I, MACHARIS C. Travel-based multitasking: review of the empirical evidence[J]. Transport Reviews, 2018, 38(2): 162-183. doi: 10.1080/01441647.2017.1317048
    [46] SUN S S, WONG Y D, RAU A. Economic assessment of a dynamic autonomous road transit system for Singapore[J]. Research in Transportation Economics, 2020, 83: 100843.
    [47] MILAKIS D, VAN AREM B, VAN WEE B. Policy and society related implications of automated driving: a review of literature and directions for future research[J]. Journal of Intelligent Transportation Systems, 2017, 21(4): 324-348.
    [48] SIVAK M, SCHOETTLE B. Would self-driving vehicles increase occupant productivity[R]. Michigan: The University of Michigan, 2016.
    [49] BANSAL P, KOCKELMAN K M. Are we ready to embrace connected and self-driving vehicles? a case study of Texans[J]. Transportation, 2018, 45(2): 641-675.
    [50] CYGANSKI R, FRAEDRICH E, LENZ B. Travel-time valuation for automated driving: a use-case-driven study[C]// TRB. 94th Annual Meeting of the Transportation Research Board. Washington DC: TRB, 2015: 15-4259.
    [51] PUDĀNE B, MOLIN E J E, ARENTZE T A, et al. A time-use model for the automated vehicle-era[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 102-114.
    [52] SINGLETON P A. Discussing the "positive utilities" of autonomous vehicles: will travellers really use their time productively?[J]. Transport Reviews, 2019, 39(1): 50-65.
    [53] KASSENS-NOOR E, WILSON M, CAI M, et al. Autonomous vs. self-driving vehicles: the power of language to shape public perceptions[J]. Journal of Urban Technology, 2021, 28(3/4): 5-24.
    [54] BARBOUR N, MENON N, ZHANG Yu, et al. Shared automated vehicles: a statistical analysis of consumer use likelihoods and concerns[J]. Transport Policy, 2019, 80: 86-93.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  2731
  • HTML全文浏览量:  563
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-13
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回