留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向快速路交通瓶颈的混合交通群体节流控制策略

赵杭 赵敏 孙棣华 杜成

赵杭, 赵敏, 孙棣华, 杜成. 面向快速路交通瓶颈的混合交通群体节流控制策略[J]. 交通运输工程学报, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013
引用本文: 赵杭, 赵敏, 孙棣华, 杜成. 面向快速路交通瓶颈的混合交通群体节流控制策略[J]. 交通运输工程学报, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013
ZHAO Hang, ZHAO Min, SUN Di-hua, DU Cheng. Mixed traffic group throttling control strategy for traffic bottleneck of expressway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013
Citation: ZHAO Hang, ZHAO Min, SUN Di-hua, DU Cheng. Mixed traffic group throttling control strategy for traffic bottleneck of expressway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 162-173. doi: 10.19818/j.cnki.1671-1637.2022.03.013

面向快速路交通瓶颈的混合交通群体节流控制策略

doi: 10.19818/j.cnki.1671-1637.2022.03.013
基金项目: 

国家重点研发计划 2018YFB1600600

详细信息
    作者简介:

    赵杭(1993-), 男, 重庆江北人, 重庆大学工学博士研究生, 从事智能交通系统研究

    孙棣华(1962-), 男, 重庆渝北人,重庆大学教授,工学博士

    通讯作者:

    赵敏(1980-), 女, 四川南充人, 重庆大学副教授, 工学博士

  • 中图分类号: U491.2

Mixed traffic group throttling control strategy for traffic bottleneck of expressway

Funds: 

National Key Research and Development Program of China 2018YFB1600600

More Information
Article Text (Baidu Translation)
  • 摘要: 针对传统人驾车(HV)和网联自动车(CAV)组成混合交通条件下的快速路道路缩减瓶颈问题,从群体控制角度,提出了一种新的速度协调控制策略(简称节流控制策略);基于瓶颈交通状态和Greenshields模型,设计了领航CAV速度控制器;面向CAV节流群体组群过程的控制问题,提出了目标切换下的非线性控制器;构建了CAV节流群体类队列控制器,实现了基于瓶颈交通状态的群体形态与群体速度动态调节,进而联合领航CAV速度控制方法,周期性管控超过每组节流群体的车辆;提出了CAV纵向安全控制器来解决组群和群体演化过程的车辆安全问题。仿真结果表明:在快速路瓶颈路段下,对比传统交通系统,提出的动态节流控制策略CAV渗透率达到5%,在车流量分别为2 000、3 000、5 000、6 000 veh·h-1条件下,可对应分别提高通行效率约5.87%、16.97%、11.07%、10.25%;在固定车流量为3 000或6 000 veh·h-1的快速路混合交通瓶颈路段中,对比传统交通系统,若CAV渗透率分别为10%、20%、30%,受控交通系统的通行效率可提升约24%;通过对车头间距分析,受控CAV在节流全过程中无碰撞事故发生,且可与前车保持9 m以上安全距离。可见,节流控制策略在应对快速路瓶颈问题是有效的。

     

  • 图  1  基于CAV的节流控制

    Figure  1.  CAV-based throttling control

    图  2  节流控制执行逻辑

    Figure  2.  Execution logic of throttling control

    图  3  CAV节流群体与节流控制

    Figure  3.  Throttling group and throttling control of CAV

    图  4  跟随目标切换

    Figure  4.  Following target change

    图  5  目标切换控制增益非线性项

    Figure  5.  Nonlinear control gain in target changing control

    图  6  纵向安全控制增益非线性项

    Figure  6.  Nonlinear control gain in longitudinal safe control

    图  7  pCAV=0及无控制下车流密度-时间热力图

    Figure  7.  Density-time heat maps of traffic flow without control at pCAV=0

    图  8  pCAV=0及无控制下平均车速-时间热力图

    Figure  8.  Average velocity-time heat maps without control at pCAV=0

    图  9  pCAV=5%及节流控制下车流密度-时间热力图

    Figure  9.  Density-time heat maps of traffic flow under throttling control at pCAV=5%

    图  10  pCAV=5%及节流控制下平均车速-时间热力图

    Figure  10.  Average velocity-time heat maps under throttling control at pCAV=5%

    图  11  Q=3 000 veh·h-1及节流控制下车流密度-时间热力图

    Figure  11.  Density-time heat maps of traffic flow under throttling control at Q=3 000 veh·h-1

    图  12  Q=3 000 veh·h-1及节流控制下平均车速-时间热力图

    Figure  12.  Average velocity-time heat maps under throttling control at Q=3 000 veh·h-1

    图  13  Q=6 000 veh·h-1及节流控制下车流密度-时间热力图

    Figure  13.  Density-time heat maps of traffic flow under throttling control at Q=6 000 veh·h-1

    图  14  Q=6 000 veh·h-1及节流控制下平均车速-时间热力图

    Figure  14.  Average velocity-time heat maps under throttling control at Q=6 000 veh·h-1

    图  15  CAV与前车车头间距

    Figure  15.  Space headways between CAVs and their predecessors

    1.  CAV-based throttling control

    2.  Logic of throttling control

    3.  AV throttling group and throttling control

    4.  Target switch

    5.  Nonlinear term of control gain under target switch

    6.  Nonlinear control gain in longitudinal safety control

    7.  Density–time heat maps of traffic flow without control at pCAV = 0

    8.  Average speed–time heat maps without control at pCAV = 0

    9.  Density–time heat maps of traffic flow with throttling control at pCAV = 5%

    10.  Average speed–time heat maps with throttling control at pCAV = 5%

    11.  Density–time heat maps of traffic flow with throttling control at Q = 3 000 veh·h-1

    12.  Average speed–time heat maps with throttling control at Q = 3 000 veh·h-1

    13.  Density–time heat maps of traffic flow with throttling control at Q = 6 000 veh·h-1

    14.  Average speed–time heat maps with throttling control at Q = 6 000 veh·h-1

    15.  Space headways between CAVs and their front vehicles

    表  1  VISSIM换道模型参数取值

    Table  1.   Parameter values of lane-changing model in VISSIM

    参数 取值
    必要的跟换车道 最大减速度/(m·s-2) 本车为-4,被超车为-3
    单位减速度变化率对应距离/m 本车与被超车均为100
    可接受的减速度/(m·s-2) 本车与被超车均为-1
    消失前的等待时间/s 60
    最小车头空距(前/后)/m 0.5
    协调刹车的最大减速度/(m·s-2) -3
    下载: 导出CSV

    表  2  VISSIM跟驰模型参数取值

    Table  2.   Parameter values of car-following model in VISSIM

    跟驰模型 Wiedemann 99
    停车时的平均期望车辆间距/m 2.0
    期望保持的车头时间距/m 2.0
    前视距离/m 最小为0, 最大为250
    后视距离/m 最小为0,最大为250
    下载: 导出CSV

    表  3  1 h通过瓶颈区车辆数统计

    Table  3.   Statistics of vehicles passing bottleneck region in 1 h

    控制方式 车流量/(veh·h-1) 预设CAV渗透率/% 通过瓶颈区车辆数 效率提升比/%
    无控制 2 000 0 1 804
    3 000 0 2 310
    5 000 0 3 818
    6 000 0 3 676
    节流控制 2 000 5 1 910 5.87
    3 000 5 2 702 16.97
    5 000 5 4 241 11.07
    6 000 5 4 053 10.26
    3 000 10 2 787 20.65
    3 000 20 2 812 21.73
    3 000 30 2 885 24.89
    6 000 10 4 633 26.03
    6 000 20 4 915 33.70
    6 000 30 5 008 36.23
    下载: 导出CSV

    1.   Parameters and values of lane changing model in VISSIM

    2.   Parameters and values of car following model in VISSIM

    3.   Data of vehicles passing through the bottleneck area within one hour

  • [1] WANG Jia-wei, ZHENG Yang, CHEN Chao-yi, et al. Leading cruise control in mixed traffic flow: system modeling, controllability, and string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3118021.
    [2] GUO Qian-qiang, BAN Xue-gang, AZIZ H M A. Mixed traffic flow of human driven vehicles and automated vehicles on dynamic transportation networks[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103159. doi: 10.1016/j.trc.2021.103159
    [3] SARKER A, SHEN H Y, RAHMAN M, et al. A review of sensing and communication, human factors, and controller aspects for information-aware connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 7-29. doi: 10.1109/TITS.2019.2892399
    [4] MA Jia-qi, LI Xiao-peng, SHLADOVER S, et al. Freeway speed harmonization[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 78-89. doi: 10.1109/TIV.2016.2551540
    [5] ENGLUND C, CHEN L, VORONOV A. Cooperative speed harmonization for efficient road utilization[C]//IEEE. 7th International Workshop on Communication Technologies for Vehicles. New York: IEEE, 2014: 19-23.
    [6] YANG H, RAKHA H. Feedback control speed harmonization algorithm: methodology and preliminary testing[J]. Transportation Research Part C: Emerging Technologies, 2017, 81: 209-226. doi: 10.1016/j.trc.2017.06.002
    [7] LU Xiao-yun, SHLADOVER S E. Review of variable speed limits and advisories[J]. Journal of the Transportation Research Board, 2014, 2423(1): 15-23. doi: 10.3141/2423-03
    [8] ZHANG Yi-hang, IOANNOU P A. Combined variable speed limit and lane change control for highway traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7): 1812-1823. doi: 10.1109/TITS.2016.2616493
    [9] GRUMERT E, MA Xiao-liang, TAPANI A. Analysis of a cooperative variable speed limit system using microscopic traffic simulation[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 173-186. doi: 10.1016/j.trc.2014.11.004
    [10] JIN Hui-yun, JIN Wen-long. Control of a lane-drop bottleneck through variable speed limits[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 568-584. doi: 10.1016/j.trc.2014.08.024
    [11] WU Yuan-kai, TAN Hua-chun, QIN Ling-qiao, et al. Differential variable speed limits control for freeway recurrent bottlenecks via deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102649. doi: 10.1016/j.trc.2020.102649
    [12] KE Ze-mian, LI Zhi-bin, CAO Ze-hong, et al. Enhancing transferability of deep reinforcement learning-based variable speed limit control using transfer learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4684-4695. doi: 10.1109/TITS.2020.2990598
    [13] TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Speed harmonization: Evaluation of effectiveness under congested conditions[J]. Journal of the Transportation Research Board, 2013, 2391(1): 69-79. doi: 10.3141/2391-07
    [14] YANG H, RAKHA H. Feedback control speed harmonization algorithm: methodology and preliminary testing[J]. Transportation Research Part C: Emerging Technologies, 2017, 81: 209-226. doi: 10.1016/j.trc.2017.06.002
    [15] HAN Yu, WANG Meng, HE Zi-ang, et al. A linear Lagrangian model predictive controller of macro- and micro-variable speed limits to eliminate freeway jam waves[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103121. doi: 10.1016/j.trc.2021.103121
    [16] RAADSEN M P H, BLIEMER M C J. Variable speed limits in the link transmission model using an information propagation method[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103184. doi: 10.1016/j.trc.2021.103184
    [17] MALIKOPOULOS A A, HONG S, PARK B B, et al. Optimal control for speed harmonization of automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2405-2417. doi: 10.1109/TITS.2018.2865561
    [18] HAN Y, CHEN Dan-jue, AHN S. Variable speed limit control at fixed freeway bottlenecks using connected vehicles[J]. Transportation Research Part B: Methodological, 2017, 98: 113-134. doi: 10.1016/j.trb.2016.12.013
    [19] WANG Yi-bing, YU Xiang-hua, ZHANG Si-yu, et al. Freeway traffic control in presence of capacity drop[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1497-1516. doi: 10.1109/TITS.2020.2971663
    [20] GHIASI A, LI Xiao-peng, MA Jia-qi. A mixed traffic speed harmonization model with connected autonomous vehicles[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 210-233. doi: 10.1016/j.trc.2019.05.005
    [21] GOULET N, AYALEW B. Distributed maneuver planning with connected and automated vehicles for boosting traffic efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3096878.
    [22] RIOS-TORRES J, MALIKOPOULOS A A. Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(4): 453-462.
    [23] ARD T, DOLLAR R A, VAHIDI A, et al. Microsimulation of energy and flow effects from optimal automated driving in mixed traffic[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102806. doi: 10.1016/j.trc.2020.102806
    [24] ČIČIĆ M, XIONG Xi, JIN Li, et al. Coordinating vehicle platoons for highway bottleneck decongestion and throughput improvement[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3088775.
    [25] ZU Yue, LIU Chen-hui, DAI Ran, et al. Real-time energy-efficient traffic controlvia convex optimization[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 119-136. doi: 10.1016/j.trc.2018.04.017
    [26] LI Yong-fu, TANG Chuan-chong, LI Ke-zhi, et al. Consensus- based cooperative control for multi-platoon under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2220-2229. doi: 10.1109/TITS.2018.2865575
    [27] JIA Dong-yao, NGODUY D. Platoon based cooperative driving model with consideration of realistic inter-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 245-264.
    [28] ZHAO Hang, SUN Di-hua, ZHAO Min, et al. Combined longitudinal and lateral control for heterogeneous nodes in mixed vehicle platoon under V2I communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, DOI: 10.1109/TITS.2021.3061413.
    [29] 于晓海, 郭戈. 车队控制中的一种通用可变时距策略[J]. 自动化学报, 2019, 45(7): 1335-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907010.htm

    YU Xiao-hai, GUO Ge. A general variable time headway policy in platoon control[J]. Acta Automatica Sinica, 2019, 45(7): 1335-1343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907010.htm
    [30] JIANG Rui, WU Qing-song, ZHU Zuo-jin. Full velocity difference model for a car-following theory[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64: 017101.
  • 加载中
图(30) / 表(6)
计量
  • 文章访问数:  767
  • HTML全文浏览量:  238
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回