Damaged plastic analysis of concrete around dowel bars at joint in cement pavement
-
摘要: 为揭示水泥路面接缝传力杆周围混凝土的受力特性与损伤机理,基于ABAQUS有限元软件,介绍了混凝土损伤塑性(CDP)模型及其参数确定方法,应用CDP模型模拟了混凝土试件单轴拉伸和压缩试验,通过对比模型试验结果验证了CDP模型参数的准确性;在此基础上,建立了接缝设置传力杆的水泥路面三维有限元模型,分析了在不同轴载作用下水泥路面接缝传力杆周围混凝土的塑性应变、损伤因子和等效应力的分布和发展规律,对比了采用CDP模型与混凝土弹性模型时传力杆周围混凝土的应力差异。分析结果表明:对于混凝土单轴拉伸、压缩试件,基于CDP模型的应力-变形全曲线模拟结果均与试验结果一致,说明CDP模型及其参数确定方法准确;对于接缝设传力杆的水泥路面,当荷载作用在接缝传力杆黏结端上方板边时,传力杆黏结端混凝土的受力最为不利;随着轴载的增大,传力杆黏结端底部混凝土率先发生损伤塑性,等效应力逐渐减小;当轴载从100 kN增大至250 kN时,传力杆周围混凝土塑性区范围从底部135°~225°扩展至60°~300°,底部150°~210°范围内混凝土发生完全损伤塑性而退出工作,等效应力趋于0,应力重分布导致更多的荷载由传力杆两侧和上部混凝土承担;若传力杆周围混凝土采用弹性模型,传力杆底部混凝土等效应力将不断增大而超过极限强度,因此,分析传力杆周围混凝土应力集中问题建议采用CDP模型。Abstract: To reveal the mechanical characteristics and damage mechanism of concrete around the dowel bars at the joints in cement pavement, the concrete damaged plasticity (CDP) model and the method for determining its parameters were introduced on the basis of the finite element software ABAQUS. The uniaxial tension and compression tests of concrete specimens were simulated by the CDP model, and the accuracies of the CDP model parameters were verified by the comparison of model test results. On this basis, a three-dimensional finite element model of cement pavement with dowel bars at joints was built to analyze the distribution and development laws of the plastic strain, damage factor, and equivalent stress of concrete around the dowel bars at the joints subjected to different axle loads. Under the CDP model and elastic model of concrete, the difference between the two models in the stress of concrete around the dowel bars was compared. Analysis results show that for the uniaxial tension and compression specimens of concrete, the entire stress-deformation curves achieved by the simulation with the CDP model are consistent with the test results, indicating that the CDP model and its parameters are accurate. For the cement pavement with dowel bars at joints, when the load is applied at the edge of upper slab of the bonded end of a dowel bar, the stress in the concrete around the bonded end of the dowel bar is most disadvantageous. With the increase in the axle loads, the damaged plasticity is encountered first in the concrete at the bottom of bonded end of the dowel bar, and the equivalent stress reduces gradually. When the axle load raises from 100 kN to 250 kN, the range of plastic zone extends from 135°-225° at the bottom to 60°-300° for the concrete around the dowel bar. The concrete in the range of 150°-210° at the bottom is subjected to failure due to the complete damaged plasticity, and the equivalent stress becomes zero. More loads are borne by the concrete on both sides and at the top of the dowel bar due to the stress redistribution. If the elastic model is adopted for the concrete around the dowel bar, the equivalent stress of the concrete at the bottom of the dowel bar will be on the rise to exceed the ultimate strength. Therefore, the CDP model is recommended to analyze the stress concentration of concrete around the dowel bars.
-
Key words:
- pavement engineering /
- cement pavement /
- concrete damaged plasticity /
- joint /
- dowel bar
-
表 1 混凝土基本力学性质参数
Table 1. Fundamental mechanical property parameters of concrete
力学性质参数 计算公式 参数值 弯拉强度fr/MPa 5.5 立方体抗压强度fcu/MPa fcu=1.1(fr/0.438)3/2 48.947 轴心抗拉强度ft/MPa ft=0.24fcu2/3 3.211 峰值拉应变εtr/10-3 εtr=6.7×10-5ft1/2 0.120 轴心抗压强度fc/MPa fc=0.4fcu7/6 37.446 峰值压应变εcr/10-3 εcr=5.2×10-4fc1/3 1.738 初始弹性模量E0/MPa E0=ft/εtr 26 700 表 2 混凝土单轴拉伸损伤塑性参数
Table 2. Damaged plastic parameters of concrete under uniaxial tension
σt εt/10-3 εti/10-3 dt 3.211 0.120 0.000 0.000 2.923 0.144 0.035 0.038 2.519 0.168 0.074 0.120 2.171 0.192 0.111 0.213 1.895 0.216 0.145 0.300 1.678 0.240 0.177 0.377 1.506 0.264 0.208 0.445 1.367 0.288 0.237 0.502 1.158 0.336 0.293 0.594 0.950 0.408 0.373 0.691 0.743 0.528 0.500 0.789 0.564 0.720 0.699 0.869 0.495 0.840 0.822 0.897 0.371 1.200 1.186 0.941 0.303 1.560 1.548 0.962 0.259 1.919 1.910 0.973 0.228 2.279 2.270 0.979 0.205 2.638 2.630 0.984 0.187 2.997 2.990 0.987 表 3 混凝土单轴压缩损伤塑性参数
Table 3. Damaged plastic parameters of concrete under uniaxial compression
σc εc/10-3 εci/10-3 dc 33.265 1.241 0.000 0.000 35.330 1.391 0.070 0.005 36.930 1.564 0.184 0.022 37.446 1.738 0.336 0.047 34.184 2.085 0.807 0.122 28.117 2.433 1.381 0.218 22.626 2.780 1.934 0.316 18.392 3.127 2.439 0.406 15.239 3.473 2.904 0.483 12.878 3.820 3.339 0.548 9.678 4.513 4.151 0.648 6.929 5.552 5.293 0.747 4.964 6.935 6.749 0.825 3.638 8.661 8.525 0.881 2.863 10.384 10.277 0.914 2.358 12.104 12.016 0.934 表 4 试件力学性质参数
Table 4. Mechanical property parameters of specimens
力学性质参数 参数值 轴心抗拉强度ft/MPa 3.2 峰值拉应变εtr/10-3 0.107 轴心抗压强度fc/MPa 46.5 峰值压应变εcr/10-3 1.830 初始弹性模量E0/MPa 30 000 表 5 路面结构尺寸和材料参数
Table 5. Structural dimensions and material parameters of pavement
结构 长(m)×宽(m)×厚(m) 模量/MPa 泊松比 面层 4.0×3.6×0.26 26 700 0.20 基层 9.0×4.6×0.2 2 500 0.20 底基层 9.0×4.6×0.2 250 0.25 路基 9.0×4.6×6.0 80 0.35 表 6 荷载参数
Table 6. Loading parameters
轴载/kN 接地压强/MPa 轮印宽/cm 轮印长/cm 50 0.44 22 12.91 100 0.57 22 19.94 150 0.71 24 22.01 200 0.85 24 24.51 250 0.97 24 26.85 -
[1] 谭忆秋, 李洛克, 曹鹏, 等. 水泥混凝土路面传力杆系统极限承载力的扩展有限元分析[J]. 农业工程学报, 2012, 28(24): 62-69, 360. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201224013.htmTAN Yi-qiu, LI Luo-ke, CAO Peng, et al. Extended finite element analysis of ultimate load-bearing capacity for dowel bar system in cement concrete pavement[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 62-69, 360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201224013.htm [2] SEO Y, KIM S M. Longitudinal cracking at transverse joints caused by dowel bars in jointed concrete pavements[J]. KSCE Journal of Civil Engineering, 2013, 17(2): 395-402. doi: 10.1007/s12205-013-2047-5 [3] HU Ming-wu, LI Luo-ke, WANG Yi-na, et al. The application of numerical simulation technology in road engineering[J]. Applied Mechanics and Materials, 2013, 336-338: 690-694. doi: 10.4028/www.scientific.net/AMM.336-338.690 [4] 蒋应军, 戴经梁. 传力杆与混凝土界面的接触应力[J]. 中国公路学报, 2007, 20(2): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200702005.htmJIANG Ying-jun, DAI Jing-liang. Contact stresses at interfaces between dowels and surrounding concrete[J]. China Journal of Highway and Transport, 2007, 20(2): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200702005.htm [5] RIAD M Y. Stress concentration around dowel bars in jointed rigid concrete pavements[D]. Morgartown: West Virginia University, 2001. [6] RIAD M Y, SHOUKRY S N, WILLIAM G W, et al. Effect of skewed joints on the performance of jointed concrete pavement through 3D dynamic finite element analysis[J]. International Journal of Pavement Engineering, 2009, 10(4): 251-263. doi: 10.1080/10298430701771783 [7] LI Luo-ke, TAN Yi-qiu, GONG Xiang-bing, et al. Characterization of contact stresses between dowels and surrounding concrete in jointed concrete pavement[J]. International Journal of Civil and Environmental Engineering, 2012, 12(5): 23-27. [8] 李洛克. 水泥混凝土路面传力杆的传荷失效机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.LI Luo-ke. Research on the load transfer failure mechanism for dowel bar in concrete pavement[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese) [9] AL-HUMEIDAWI B H, MANDAL P. Evaluation of performance and design of GFRP dowels in jointed plain concrete pavement—Part 2: numerical simulation and design considerations[J]. International Journal of Pavement Engineering, 2014, 15(8): 752-765. doi: 10.1080/10298436.2014.893314 [10] MACKIEWICZ P. Thermal stress analysis of jointed plane in concrete pavements[J]. Applied Thermal Engineering, 2014, 73(1): 1169-1176. doi: 10.1016/j.applthermaleng.2014.09.006 [11] MACKIEWICZ P. Finite-element analysis of stress concentration around dowel bars in jointed plain concrete pavement[J]. Journal of Transportation Engineering, 2015, 141(6): 06015001. doi: 10.1061/(ASCE)TE.1943-5436.0000768 [12] MACKIEWICZ P, SZYDŁO A. The analysis of stress concentration around dowel bars in concrete pavement[J]. Magazine of Concrete Research, 2020, 72(2): 97-107. doi: 10.1680/jmacr.18.00057 [13] ZUZULOVA A, GROSEK J, JANKU M. Experimental laboratory testing on behavior of dowels in concrete pavements[J]. Materials, 2020, 13(10): 2343. doi: 10.3390/ma13102343 [14] LUBLINER J, OLIVER J, OLLER S, et al. A plastic- damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326. doi: 10.1016/0020-7683(89)90050-4 [15] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892) [16] MAHMUD G H, YANG Zhen-jun, HASSAN A M. Experimental and numerical studies of size effects of ultra high performance steel fibre reinforced concrete (UHPFRC) beams[J]. Construction and Building Materials, 2013, 48: 1027-1034. doi: 10.1016/j.conbuildmat.2013.07.061 [17] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304009.htmNIE Jian-guo, WANG Yu-hang. Comparison study of constitutive model of concrete in ABAUQS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67, 82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304009.htm [18] GEORGE J, KALYANA RAMA J S, SIVA KUMAR M V N, et al. Behavior of plain concrete beam subjected to three point bending using concrete damaged plasticity (CDP) model[J]. Materials Today: Proceedings, 2017, 4(9): 9742-9746. doi: 10.1016/j.matpr.2017.06.259 [19] PRABHU M, BUCH N, VARMA A, et al. Experimental investigation of effects of dowel misalignment on joint opening behavior in rigid pavements[J]. Transportation Research Record, 2006, 1947(1), 15-27. doi: 10.1177/0361198106194700102 [20] PRABHU M, VARMA A H, BUCH N. Experimental and analytical investigations of mechanistic effects of dowel misalignment in jointed concrete pavements[J]. Transportation Research Record, 2007, 2037(1): 12-29. doi: 10.3141/2037-02 [21] PRABHU M, VARMA A, BUCH N. Analytical investigation of the effects of dowel misalignment on concrete pavement joint opening behaviour[J]. The International Journal of Pavement Engineering, 2009, 10(1): 49-62. doi: 10.1080/10298430802342708 [22] 贾少文. 基于连续损伤力学的混凝土疲劳损伤模型[D]. 哈尔滨: 哈尔滨工业大学, 2009.JIA Shao-wen. Continuum damage mechanics-based fatigue damage model for concrete[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese) [23] 王中强, 余志武. 基于能量损失的混凝土损伤模型[J]. 建筑材料学报, 2004, 7(4): 365-369. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200404001.htmWANG Zhong-qiang, YU Zhi-wu. Concrete damage model based on energy loss[J]. Journal of Building Materials, 2004, 7(4): 365-369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200404001.htm [24] NAJAR J. Continuous damage of brittle solids[M]//KRAJCINOVIC D, LEMAITRE J. Continuum Damage Mechanics Theory and Application. New York: Springer, 1987: 233-294. [25] BIRTEL V, MARK P. Parameterized finite element modeling of RC beam shear failure[R]. Boston: ABAQUS Inc, 2006. [26] 丁发兴, 余志武. 混凝土受拉力学性能统一计算方法[J]. 华中科技大学学报(城市科学版), 2004, 21(3): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ200403008.htmDING Fa-xing, YU Zhi-wu. Unified calculation method of mechanical properties of concrete in tension[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2004, 21(3): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ200403008.htm [27] 余志武, 丁发兴. 混凝土受压力学性能统一计算方法[J]. 建筑结构学报, 2003, 24(4): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200304005.htmYU Zhi-wu, DING Fa-xing. Unified calculation method of compressive mechanical properties of concrete[J]. Journal of Building Structures, 2003, 24(4): 41-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200304005.htm [28] 顾惠琳, 彭勃. 混凝土单轴直接拉伸应力-应变全曲线试验方法[J]. 建筑材料学报, 2003, 6(1): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200301013.htmGU Hui-lin, PENG Bo. Review on the test methods of stress-strain curves of concrete in direct tensile tests[J]. Journal of Building Materials, 2003, 6(1): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX200301013.htm [29] 吴博. 混凝土应力-应变曲线试验研究与随机损伤本构模型[D]. 西安: 西安建筑科技大学, 2015.WU bo. Experimental study on complete stress-strain curve of concrete under uniaxial loading and stochastic damage constitutive model[D]. Xi'an: Xi'an University of Architecture and Technology, 2015. (in Chinese) [30] 田波, 姚祖康, 赵队家, 等. 承受特重车辆作用的水泥混凝土路面应力分析[J]. 中国公路学报, 2000, 13(2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200002004.htmTIAN Bo, YAO Zu-kang, ZHAO Dui-jia, et al. Stress analysis of cement concrete pavement with heavy loading[J]. China Journal of Highway and Transport, 2000, 13(2): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200002004.htm -