Influence of geometric alignment of expressway superelevation transition section on hydroplaning speed of minibus
-
摘要: 为了揭示高速公路不同超高过渡段线形指标下小型客车滑水速度变化规律,考虑小型客车滑水过程轮胎受力特征,分析了滑水速度与水膜厚度和超高过渡段几何线形的作用关系;应用多元线性回归和流体力学仿真建立了高速公路超高过渡段小型客车滑水速度量化模型,计算了降雨强度、纵坡坡度、超高渐变率等多变量组合下的小型客车临界滑水速度;以典型双向四车道高速公路超高过渡段为例,分析了降雨强度、纵坡坡度、超高渐变率对小型客车滑水速度的影响规律,并给出了超高过渡段小型客车限制速度建议值。研究结果表明:小型客车滑水速度最大值出现在纵坡坡度为0.3%、超高渐变率为1/200、降雨强度为20 mm·h-1组合工况下,为115.5 km·h-1,滑水速度最小值出现在纵坡坡度为3.0%、超高渐变率为1/330、降雨强度为80 mm·h-1组合工况下,为99.3 km·h-1;在降雨强度和超高渐变率一定的情况下,随着纵坡坡度增大,滑水速度逐渐减小,当纵坡坡度由0.3%增加到3.0%时,滑水速度减小2.68%;在降雨强度和纵坡坡度一定条件下,随着超高渐变率增大,滑水速度逐渐增大,当超高渐变率从1/330增加到1/200时,滑水速度上升了2.25%;增加纵坡坡度会降低滑水速度,但当降雨强度增加到一定程度,纵坡坡度、超高渐变率对滑水速度的影响趋于平缓;当降雨强度为20~80 mm·h-1时,双向四车道高速公路限速建议值为95.0~115.0 km·h-1,但不应大于其设计速度。Abstract: In order to reveal the change laws of hydroplaning speed of minibus under different geometrical alignment factors at expressway superelevation transition section, the relationships among hydroplaning speed, water film thickness and superelevation transition geometric alignment factors were analyzed according to the tire force characteristics of minibus during hydroplaning process. Based on the multivariate linear regression and fluid simulation, a quantitative model of hydroplaning speed of minibus at superelevation transition section was established. Combined the rainfall intensity, longitudinal slope and superelevation transition rate, the critical hydroplaning speed of minibus was calculated. Taking the superelevation transition section of a typical four-lane expressway as an example, the influence law of rainfall intensity, longitudinal slope and superelevation transition rate on the hydroplaning speed of minibus was studied, and the recommended limit speed value at superelevation transition section was given. Research results show that the maximum value of hydroplaning speed of minibus is 115.5 km·h-1 under the combination of longitudinal slope of 0.3%, superelevation transition rate of 1/200 and rainfall intensity of 20 mm·h-1, and the minimum value of hydroplaning speed of minibus is 99.3 km·h-1under the combination of longitudinal slope of 3.0%, superelevation transition rate of 1/330 and rainfall intensity of 80 mm·h-1. Under the condition that rainfall intensity and superelevation transition rate are certain, the hydroplaning speed decreases gradually with the increase of longitudinal slope, and decreases by 2.68% when the longitudinal slope increases from 0.3% to 3.0%. Under the condition that the rainfall intensity and longitudinal slope are certain, the hydroplaning speed increases gradually with the increase of superelevation transition rate, and increases by 2.25% when the superelevation transition rate increases from 1/330 to 1/200. Increasing the longitudinal slope can reduce hydroplaning speed. However, when the rainfall intensity increases to a certain degree, the influence of longitudinal slope and superelevation transition rate on the hydroplaning speed tends to be flat. When the rainfall intensity is 20-80 mm·h-1, the recommended limit speed is 95.0-115.0 km·h-1, but not greater than the design speed.
-
表 1 拟合结果
Table 1. Fitting result
影响因素 标准误差 拟合优度 b 0.047 0.96 im 0.025 p 0.024 表 2 影响因素范围
Table 2. Ranges of influence factors
影响因素 纵坡坡度/% 超高渐变率 降雨强度/(mm·h-1) 取值范围 0.3~3.0 1/330~1/200 20~80 表 3 影响因素极值组合下的滑水速度
Table 3. Hydroplaning speeds under extreme combinations of influencing factors
降雨强度/(mm·h-1) 纵坡坡度/% 超高渐变率 滑水速度/(km·h-1) 20 0.3 1/330 110.0 0.3 1/200 115.5 3.0 1/330 108.5 3.0 1/200 112.9 80 0.3 1/330 101.6 0.3 1/200 104.3 3.0 1/330 99.3 3.0 1/200 102.0 表 4 超高过渡段小型客车限制速度建议值
Table 4. Recommended limit speeds of car at superelevation transition section
km·h-1 降雨强度/(mm·h-1) 纵坡坡度/% 超高渐变率 1/330 1/300 1/250 1/225 1/200 20 0.3 110 110 110 115 115 1.0 110 110 110 110 110 2.0 105 105 110 110 110 3.0 105 105 105 110 110 40 0.3 105 105 105 105 105 1.0 100 100 105 105 105 2.0 100 100 100 100 105 3.0 100 100 100 100 100 60 0.3 100 100 100 100 100 1.0 100 100 100 100 100 2.0 100 100 100 100 100 3.0 95 100 100 100 100 80 0.3 100 100 100 100 100 1.0 100 100 100 100 100 2.0 95 100 100 100 100 3.0 95 95 100 100 100 -
[1] 冯停. 湿滑路面轮胎滑水机理研究[D]. 青岛: 青岛理工大学, 2018.FENG Ting. The study of tire hydroplaning mechanism on wet road[D]. Qingdao: Qingdao University of Technology, 2018. (in Chinese) [2] DING Y M, WANG H. Computational investigation of hydroplaning risk of wide-base truck tyres on roadway[J]. International Journal of Pavement Engineering, 2020, 21(1): 122-133. doi: 10.1080/10298436.2018.1445249 [3] WIES B, ROEGER B, MUNDL R. Influence of pattern void on hydroplaning and related target conflicts[J]. Tire Science and Technology, 2009, 37(3): 187-206. doi: 10.2346/1.3137087 [4] ZHOU Hai-chao, JIANG Zhen, JIANG Bai-yu, et al. Optimization of tire tread pattern based on flow characteristics to improve hydroplaning resistance[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(13): 2961-2974. doi: 10.1177/0954407020932257 [5] MARTIN C S. Hydrodynamics of tire hydroplaning[J]. Journal of Aircraft, 1967, 4(2): 136-140. doi: 10.2514/3.43810 [6] 郑彬双, 朱晟泽, 程永振, 等. 基于轮胎滑水模型的轮胎-沥青路面附着特性影响因素分析[J]. 东南大学学报(自然科学版), 2018, 48(4): 719-725. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201804019.htmZHENG Bin-shuang, ZHU Sheng-ze, CHENG Yong-zhen, et al. Analysis on influence factors of adhesion characteristic of tire-asphalt pavement based on tire hydroplaning model[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4): 719-725. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201804019.htm [7] 刘修宇, 曹青青, 朱晟泽, 等. 沥青混凝土路面轮胎临界滑水速度数值模拟[J]. 东南大学学报(自然科学版), 2017, 47(5): 1020-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201705028.htmLIU Xiu-yu, CAO Qing-qing, ZHU Sheng-ze, et al. Numerical simulation of tire critical hydroplaning speed on asphalt pavement[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(5): 1020-1025. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201705028.htm [8] ZHU Sheng-ze, LIU Xiu-yu, CAO Qing-qing, et al. Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient[J]. Advances in Materials Science and Engineering, 2017, 2017: 5843061. [9] ZHENG Bin-shuang, HUANG Xiao-ming, ZHANG Wei-guang, et al. Adhesion characteristics of tire-asphalt pavement interface based on a proposed tire hydroplaning model[J]. Advances in Materials Science and Engineering, 2018, 2018: 5916180. [10] ONG G P, FWA T F. Prediction of wet-pavement skid resistance and hydroplaning potential[J]. Transportation Research Record, 2007, 2005: 160-171. doi: 10.3141/2005-17 [11] ONG G P, FWA T F. Analysis of effectiveness of longitudinal grooving against hydroplaning[J]. Transportation Research Record, 2006, 1949: 112-125. doi: 10.1177/0361198106194900110 [12] ONG G P, FWA T F, GUO J. Modeling hydroplaning and effects of pavement microtexture[J]. Transportation Research Record, 2005, 1905: 166-176. doi: 10.1177/0361198105190500118 [13] DEHNAD M H, KHODAⅡ A. Effects of asphalt pavement texture on hydroplaning threshold speed[J]. Journal of Central South University, 2019, 26(1): 256-264. doi: 10.1007/s11771-019-3998-6 [14] DEHNAD M H, KHODAⅡ A. Evaluating the effect of different asphalt mixtures on hydroplaning using a new lab-scale apparatus[J]. Petroleum Science and Technology, 2016, 34(20): 1726-1733. doi: 10.1080/10916466.2016.1221964 [15] 董强柱, 李彦伟, 石鑫, 等. 道路表面动水压力的计算和分析[J]. 长安大学学报(自然科学版), 2013, 33 (5): 17- 22. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201305005.htmDONG Qiang-zhu, LI Yan-wei, SHI Xin, et al. Calculation and analysis of hydrodynamic pressure on road surface[J]. Journal of Chang'an University (Natural Science Edition), 2013, 33(5): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201305005.htm [16] ZAKERZADEH M, ABTAHI S M, ALLAFCHIAN A, et al. Effectiveness of superhydrophobic material on the hydroplaning risk of asphalt pavements[J]. International Journal of Pavement Engineering, 2021, 22(12): 1592-1600. doi: 10.1080/10298436.2019.1704756 [17] LIU Ming-wei, CHIAKI M, OEDA Y, et al. Modelling fundamental diagrams according to different water film depths from the perspective of the dynamic hydraulic pressure[J]. Scientific Reports, 2020, 10(1): 6496. doi: 10.1038/s41598-020-63381-1 [18] CHU L J, FWA T F. Pavement skid resistance consideration in rain-related wet-weather speed limits determination[J]. Road Materials and Pavement Design, 2018, 19(2): 334-352. doi: 10.1080/14680629.2016.1261723 [19] PLATI C, POMONI M, GEORGOULI K. Quantification of skid resistance seasonal variation in asphalt pavements[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(2): 237-248. doi: 10.1016/j.jtte.2018.07.003 [20] PENG J, CHU L, FWA T F. Determination of safe vehicle speeds on wet horizontal pavement curves[J]. Road Materials and Pavement Design, 2021, 22(11): 2641-2653. doi: 10.1080/14680629.2020.1772350 [21] SPITZHÜTTL F, GOIZET F, UNGER T, et al. The real impact of full hydroplaning on driving safety[J]. Accident Analysis and Prevention, 2020, 138: 105458. doi: 10.1016/j.aap.2020.105458 [22] DING Yang-min, WANG Hao. Evaluation of hydroplaning risk on permeable friction course using tire-water-pavement interaction model[J]. Transportation Research Record, 2018, 2672(40): 408-417. doi: 10.1177/0361198118781392 [23] NAZARI A, CHEN L, BATTAGLIA F, et al. Prediction of hydroplaning potential using fully coupled finite element-computational fluid dynamics tire models[J]. Journal of Fluids Engineering, 2020, 142(10): 101202. doi: 10.1115/1.4047393 [24] 李强, 张卓, 张立. 临界滑水速度的计算研究[J]. 重庆交通大学学报(自然科学版), 2011, 30(5): 989-993. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201105021.htmLI Qiang, ZHANG Zhuo, ZHANG Li. Calculation and research of hydroplaning critical velocity[J]. Journal of Chongqing Jiaotong University (Natural Science), 2011, 30(5): 989-993. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201105021.htm [25] 季天剑, 黄晓明, 刘清泉. 部分滑水对路面附着系数的影响[J]. 交通运输工程学报, 2003, 3(4): 10-12. http://transport.chd.edu.cn/article/id/200304003JI Tian-jian, HUANG Xiao-ming, LIU Qing-quan. Part hydroplaning effect on pavement friction coefficient[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 10-12. (in Chinese) http://transport.chd.edu.cn/article/id/200304003 [26] 黄晓明, 刘修宇, 曹青青, 等. 积水路面轮胎部分滑水数值模拟[J]. 湖南大学学报(自然科学版), 2018, 45(9): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809013.htmHUANG Xiao-ming, LIU Xiu-yu, CAO Qing-qing, et al. Numerical simulation of tire partial hydroplaning on flooded pavement[J]. Journal of Hunan University (Natural Sciences), 2018, 45(9): 113-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201809013.htm [27] 罗京, 刘建蓓, 王元庆. 路面水膜深度预测模型验证试验[J]. 中国公路学报, 2015, 28(12): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512009.htmLUO Jing, LIU Jian-bei, WANG Yuan-qing. Validation test on pavement water film depth prediction model[J]. China Journal of Highway and Transport, 2015, 28(12): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512009.htm [28] 张卓, 高建平. 考虑水流路径长度的S型曲线超高段纵坡研究[J]. 重庆交通大学学报(自然科学版), 2013, 32(4): 594-596, 691. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201304012.htmZHANG Zhuo, GAO Jian-ping. Longitudinal slope at super-elevation sections of S curve considering flow path length[J]. Journal of Chongqing Jiaotong University (Natural Science), 2013, 32(4): 594-596, 691. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201304012.htm [29] 季天剑, 高玉峰, 陈荣生. 轿车轮胎动力滑水分析[J]. 交通运输工程学报, 2010, 10(5): 57-60. doi: 10.19818/j.cnki.1671-1637.2010.05.010JI Tian-jian, GAO Yu-feng, CHEN Rong-sheng. Dynamic hydroplaning analysis of car tire[J]. Journal of Traffic and Transportation Engineering, 2010, 10(5): 57-60. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2010.05.010 [30] 潘晓东, 吴琼, 胡朋, 等. 基于视觉干预的高速公路行车轨迹横向分布方法的研究[J]. 公路工程, 2012, 37(2): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201202018.htmPAN Xiao-dong, WUQiong, HU Peng, et al. Research on the method of changing the wheel tracks transverse distribution based on visual interference[J]. Highway Engineering, 2012, 37(2): 64-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201202018.htm [31] 吴建军, 袁成松, 周曾奎, 等. 短时强降雨对能见度的影响[J]. 气象科学, 2010, 30(2): 274-278.WU Jian-jun, YUAN Cheng-song, ZHOU Zeng-kui, et al. Impact of short term heavy rainfall on the monitoring and forecast of sudden visibility descent[J]. Scientia Meteorologica Sinica, 2010, 30(2): 274-278. (in Chinese) -